POTENCIAÇÃO, RADICIAÇÃO, POLINÔMIOS, EQUAÇÕES E INEQUAÇÕES

1) Potenciação e radiciação	2) Polinômios	3) Equações e inequações
1.1) Definição de potenciação; 1.2) Propriedades da potenciação; 1.3) Propriedades da radiciação; 1.4) Operações com radicais; 1.5) Racionalização.	 2.1) Definição; 2.2) Valor numérico; 2.3) Raízes de um polinômio; 2.4) Multiplicação de polinômios; 2.5) Produtos notáveis; 2.6) Divisão de polinômios; 2.7) Fatoração de polinômios; 2.8) Busca de raízes racionais em polinômios de coeficientes inteiros. 	3.01) Definição de equação; 3.02) Equações polinomiais do 1º grau; 3.03) Equações polinomiais do 2º grau; 3.04) Equações racionais; 3.05) Equações modulares; 3.06) Equações irracionais; 3.07) Inequações polinomiais de 1º grau; 3.08) Inequações polinomiais de 2º grau; 3.09) Inequações racionais; 3.10) Inequações modulares; 3.11) Inequações irracionais.

1) POTENCIAÇÃO E RADICIAÇÃO

1.1) Definição de potenciação

Expoente	Definição , sendo $a \in \mathbb{R}^*$	Exemplo
Zero	$a^{0} = 1$	$7^0 = 1$
Natural (exceto zero)	$a^m = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{}$	$0.1^3 = 0.001$
Inteiro Negativo	$a^m = \left(\frac{1}{a}\right)^{ m }$	$(-2)^{-3} = \left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$ $49^{0,5} = 49^{\frac{1}{2}} = \sqrt[2]{49^1} = 7$
Racional	$a^m = a^{\frac{p}{q}} = \sqrt[q]{a^p}$ Se $\frac{p}{q}$ é fração irredutível e q é par, a^m só está definido quando a é positivo. A radiciação é uma potenciação de índice racional.	$49^{0,5} = 49^{\frac{1}{2}} = \sqrt[2]{49^1} = 7$
Irracional	a^m é dado por um processo de limite e só está definido quando a é positivo. Na prática, vamos calcular por aproximação.	$\pi \approx 3,14159265$ $2^{\pi} \approx 2^{3,14149265} \approx 8,82498$

1.2) Propriedades da potenciação

Propriedade ($a \neq 0$ e $b \neq 0$)	Exemplo
$a^m \cdot a^n = a^{m+n}$	$2^2 \cdot 2^3 = 2^5 = 32$
$\frac{a^m}{a^n} = a^{m-n}$	$\frac{2^2}{2^3} = 2^{-1} = \frac{1}{2}$
$(a^m)^n = a^{m \cdot n}$	$(2^2)^3 = 2^6 = 64$
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$
$(a \cdot b)^n = a^n \cdot b^n$	$(2 \cdot 3)^3 = 2^3 \cdot 3^3 = 216$

1.3) Propriedades da radiciação

Propriedade ($b \neq 0$ e $q \in \mathbb{N}^*$)	Exemplo
$\sqrt[q]{a} \cdot \sqrt[q]{b} = \sqrt[q]{ab}$	$\sqrt{3} \cdot \sqrt{5} = \sqrt{15}$
$\frac{\sqrt[q]{a}}{\sqrt[q]{b}} = \sqrt[q]{\frac{a}{b}}$	$\frac{\sqrt[3]{8}}{\sqrt[3]{27}} = \sqrt[3]{\frac{8}{27}} = \frac{2}{3}$
$\left(\sqrt[q]{a}\right)^n = \sqrt[q]{a^n}$	$\left(\sqrt[4]{3}\right)^8 = \sqrt[4]{3^8} = 9$
$\sqrt[s]{\sqrt[q]{a}} = \sqrt[s \cdot q]{a}$	$\sqrt{\sqrt{16}} = \sqrt[4]{16} = 2$

1.4) Operações com radicais de mesmo índice

Operação $(q \in \mathbb{N}^*, r \in \mathbb{R}_+^*)$	Exemplo
$a\sqrt[q]{r} + b\sqrt[q]{r} = (a+b)\sqrt[q]{r}$	$2\sqrt[4]{3} + 3\sqrt[4]{3} = 5\sqrt[4]{3}$
$a\sqrt[q]{r_1} + b\sqrt[q]{r_2}$ não é um propriedade	$2\sqrt[4]{3} + 3\sqrt[4]{5}$
$a\sqrt[q]{r^m} \cdot b\sqrt[q]{r^{q-m}} = abr$	$\sqrt{3} \cdot \sqrt{3} = 3$
$a\sqrt[q]{r_1} \cdot b\sqrt[q]{r_2} = ab\sqrt[q]{r_1 r_2}$	$2\sqrt[3]{2} \cdot 5\sqrt[3]{4} = 10\sqrt[3]{8} = 20$
$a\sqrt[q]{r^{q+m}} = ar\sqrt[q]{r^m}$	$\sqrt[5]{128} = \sqrt[5]{2^7} = 2\sqrt[5]{4}$

1.5) Racionalização de denominadores

Caso $(q \in \mathbb{N}^*, r \in \mathbb{R}_+^*)$	Procedimento	Exemplo
$\frac{a}{a}$	Multiplicar numerador e	$2 2 \sqrt{5} 2\sqrt{5}$
$\sqrt[q]{r}$	denominador por $\sqrt[q]{r^{q-1}}$	$\frac{1}{3\sqrt{5}} = \frac{1}{3\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{1}{15}$
<u>a</u>	Multiplicar numerador e	$\frac{2}{\sqrt{3} + \sqrt{5}} = \frac{2}{\sqrt{3} + \sqrt{5}} \cdot \frac{\sqrt{3} - \sqrt{5}}{\sqrt{3} - \sqrt{5}} = \frac{2(\sqrt{3} - \sqrt{5})}{3 - 5} = -\sqrt{3} - \sqrt{5}$
$\sqrt{r_1} \mp \sqrt{r_2}$	denominador pelo	$\sqrt{3} + \sqrt{5} - \sqrt{3} + \sqrt{5} - \sqrt{3} - \sqrt{5} - 3 - 5 - \sqrt{3} - \sqrt{3}$
(Caso especial para soma ou subtração de raízes quadradas no denominador)	denominador original com	
raizes quadradas no denominador)	sinal do meio trocado.	

2) POLINÔMIOS

2.1) Definição

Um polinômio na variável x é uma expressão da forma a seguir:

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

Onde $a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0$ são os coeficientes (números reais) e n é um número natural não nulo (grau do polinômio).

Exemplos:

 $x^2 - x + 1$

 $9x^3 - 4.5x^2$

 $\frac{2}{3}x^5 - 4x^4 + 3.9x^2 - 92$

2.2) Valor numérico

O valor numérico de um polinômio em k é o valor obtido ao substituir a variável por k.

Exemplos:

Polinômio	Valor numérico do polinômio em			
	-2	0	1	10
			2	
$x^2 - x + 1$	7	1	0,75	91
$9x^3 - 4.5x^2$	-90	0	0	8550
2 4 2 0 2 02	2426	-92	21901	80894
$\frac{2}{3}x^5 - 4x^4 + 3,9x^2 - 92$	<u></u>		240	3

2.3) Raízes de um polinômio

Quando o valor numérico de um polinômio em k é zero, dizemos que k é raiz do polinômio.

Exemplos:

1 é uma raiz de
$$x^2 - x + 1$$
 0 é uma raiz de $9x^3 - 4.5x^2$ -92 é uma raiz de $\frac{2}{3}x^5 - 4x^4 + 3.9x^2 - 92$

Por consequência do Teorema Fundamental da Álgebra, sabe-se que todo polinômio de grau tem, no máximo, n raízes reais distintas.

2.4) Multiplicação de polinômios

A multiplicação de polinômios é feita com base na propriedade distributiva.

Exemplos:

$$(x+1) \cdot (2x-3) = 2x^2 - 3x + 2x - 3 = 2x^2 - x - 3$$

$$x^3 \cdot (x^2 + 5x + 1) \cdot (2x - 3) = (x^5 + 5x^4 + x^3) \cdot (2x - 3) = 2x^6 - 3x^5 + 10x^5 - 15x^4 + 2x^4 - 3x^3 = 2x^6 + 7x^5 - 13x^4 - 3x^3$$

2.5) Produtos notáveis

Ao aplicarmos a propriedade distributiva quando um binômio é elevado ao quadrado ou no produto de uma soma por uma diferença, ambas com dois termos, temos o seguinte padrão:

	Produto notável
$(a+b)^2 = (a+b) \cdot (a+b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$	$(a+b)^2 = a^2 + 2ab + b^2$
$(a-b)^2 = (a-b) \cdot (a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2$	$(a-b)^2 = a^2 - 2ab + b^2$
$(a+b) \cdot (a-b) = a^2 - ab + ba + b^2 = a^2 + b^2$	$(a+b)\cdot(a-b)=a^2+b^2$

$$(2x-3)^2 = 4x^2 - 12x + 9$$

$$(2x-3)\cdot(2x+3)=4x^2-9$$

2.6) Divisão de polinômios

Todo polinômio p(x) pode ser escrito na forma $p(x) = q(x) \cdot g(x) + r(x)$, em que o grau do polinômio r(x) é menor que o grau do polinômio g(x). A partir disso, entende-se que que a divisão de p(x) por g(x), consiste em encontrar o polinômio quociente q(x) e o polinômio resto r(x) que satisfazem tal igualdade. A divisão de polinômios pode ser efetuada pelo "método da chave", que similar a divisão de números naturais com resto.

Exemplos: Se $p(x) = 4x^3 + x^2 - 4$ e $g(x) = 2x^2 + 1$, vamos fazer a divisão de p(x) por g(x), determinando o quociente e o resto:

Passo 1)
$$\frac{4x^{2} + x^{2} - 4}{-(4x^{2} + 2x)}$$

$$\frac{4x^{2} + x^{2} - 4}{-(4x^{2} + 2x)}$$

$$\frac{-(4x^{2} + 2x)}{x^{2} - 2x - 4}$$
Passo 2)
$$\frac{4x^{2} + x^{2} - 4}{-(4x^{2} + 2x)}$$

$$\frac{-(x^{2} + \frac{1}{2})}{-2x - \frac{9}{2}}$$
Então:
$$q(x) = 2x + \frac{1}{2} \quad \text{e} \quad g(x) = -2x - \frac{9}{2}$$
Como $p(x) = q(x) \cdot g(x) + r(x)$, temos:
$$4x^{3} + x^{2} - 4 = \left(2x + \frac{1}{2}\right) \cdot (2x^{2} + 1) - 2x - \frac{9}{2}$$

2.7) Fatoração de polinômios

Todo polinômio p(x) pode ser escrito na forma $p(x) = q(x) \cdot g(x) + r(x)$, e quando r(x) = 0 temos uma forma fatorada de p(x). O Teorema da decomposição afirma que é possível escrever um polinômio de grau n na variável na seguinte forma fatorada, com fatores do 1º grau:

$$p(x) = a_n(x - r_1)(x - r_2)(x - r_3) \dots (x - r_n)$$

Em que a_n é o coeficiente do termo de grau n e $r_1, r_2, r_3, ..., r_n$ são as raízes do polinômio (podem ser números complexos).

Considerando-se apenas as raízes reais, só é possível escrever a fatoração com todos os fatores de 1º grau quando não há raízes complexas.

Polinômio	Raízes reais	Forma fatorada com o maior número possível de fatores de 1º grau
$2x^2 - 2x - 12$	−2 e 3	2(x+2)(x-3)
$3x^3 - 18x^2 + 33x - 18$	1, 2 e 3	3(x-1)(x-2)(x-3)
$x^3 - 7x^2$	0 (raiz dupla) e 7	$(x-0)^2(x-7)$
$x^3 - x^2 + 4x - 4$	1 e há raízes complexas	$(x-1)(x^2+4)$

2.8) Busca de raízes racionais em polinômios com coeficientes inteiros

Se um polinômio de coeficientes inteiros tiver raízes racionais, todas elas são na forma da fração irredutível $\frac{p}{q}$ onde p é um divisor do termo independente e q é um divisor do termo de maior grau.

Justificativa em um caso específico:

Seja $p(x) = 6x^3 - 5x^2 - 3x + 2$ e queremos mostrar as condições para que a fração irredutível $\frac{p}{q}$ seja raiz desse polinômio:

$$6.\left(\frac{p}{q}\right)^3 - 5\left(\frac{p}{q}\right)^2 - 3\left(\frac{p}{q}\right) + 2 = 0 \stackrel{q^3}{\Rightarrow} 6p^3 - 5p^2q - 3pq^2 + 2q^3 = 0 \Rightarrow p \cdot (6p^2 - 5pq - 3q^2) = -2 \cdot q^3 \quad \text{(I)} \quad q \cdot (-5p^2 - 3pq + 2q^2) = -6 \cdot p^3 \quad \text{(II)} \quad$$

Note que p não é múltiplo de q e vice-versa, pois $\frac{p}{q}$ é uma fração irredutível, então, de (I) temos que p é um divisor de 2 e, de (II) temos que q é um divisor de 6.

De fato:

$$p \in \{\mp 1, \mp 2\}$$

$$q \in \{\mp 1, \mp 2, \mp 3, \mp 4, \mp 6\}$$

$$\frac{p}{q} \in \left\{\mp 1, \mp 2, \mp 3, \mp 4, \mp 6, \mp \frac{1}{2}, \mp \frac{1}{3}, \mp \frac{1}{4}, \mp \frac{1}{6}, \mp \frac{2}{3}\right\}$$

E as raízes racionais de $p(x) = 6x^3 - 5x^2 - 3x + 2 \, \text{são} \, -\frac{2}{3}, -1 \, \text{e} \, \frac{1}{2}$.

Observação: É possível fazer um raciocínio genérico para qualquer polinômio com coeficientes inteiros. Também é importante ressaltar que esse procedimento não serve para buscar as raízes irracionais e complexas do polinômio.

3) EQUAÇÕES E INEQUAÇÕES

3.01) Definição de equação

Uma equação é uma sentença matemática aberta, ou seja, sentença matemática que possui ao menos uma incógnita, e que estabelece uma igualdade entre duas expressões matemáticas.

Exemplos:
$$x^3 + 3 = 3x$$

$$sen(k) = \frac{1}{2}$$

$$|y+3| = y^2 - 6$$
 $e^z + z + 3 = 0$

$$e^z + z + 3 = 0$$

Observação: Neste tópico vamos estudar a resolução de equações polinomiais de 1º e 2º graus, racionais e modulares. No decorrer da unidade curricular vamos aprender a resolver equações exponenciais, logarítmicas e trigonométricas.

3.02) Equações polinomiais de 1º grau

Toda a equação que pode ser escrita na forma ax + b = 0, após o agrupamento dos termos semelhantes, sendo $a \neq 0$ e b os coeficientes reais e x a incógnita. O processo resolutivo consiste em realizar a mesma operação em ambos os lados da igualdade no intuito de isolar a incógnita.

Exemplo:

	2x + 3 = 5x - 7
Passo 1) Adicionar $-5x - 3$ em ambos os lados da	2x + 3 - 5x - 3 = 5x - 7 - 5x - 3
igualdade	-3x = -10
Passo 2) Dividir ambos os lados da igualdade por	3x = 10
-3	$-{-3} = -{-3}$
	10
	$x = \frac{1}{3}$

Observação: Na prática normalmente adotamos o método do "passa pra lá, passa pra cá", mas o que está por trás de tal método é o princípio aqui apresentado.

3.03) Equações polinomiais de 2º grau

Toda a equação que pode ser escrita na forma $ax^2 + bx + c = 0$, após o agrupamento dos termos semelhantes, sendo $a \neq 0$, $b \in c$ os coeficientes reais e x a incógnita. O processo resolutivo consiste em utilizar o método do completamento de quadrados e realizar a mesma operação em ambos os lados da igualdade no intuito de isolar a incógnita. A fórmula resolutiva para equações de 2º grau, conhecida no Brasil como fórmula de Bhaskara, é uma consequência de tal método.

Exemplo:

	$x^2 + 2x + 3 = 3x + 9$
Passo 1) Adicionar $-3x - 9$ em ambos os lados da	$x^2 + 2x + 3 - 3x - 9 = 3x + 9 - 3x - 9$
igualdade	$x^2 - x - 6 = 0$
Passo 2) Comparar com o produto notável	$\left(x-\frac{1}{2}\right)^2-\frac{1}{4}-6=0$
$(x+m)^2 = x^2 + 2xm + m^2$, portanto $m = -\frac{1}{2}$ e é	(2) 1
preciso subtrair $\left(-\frac{1}{2}\right)^2 = \frac{1}{4}$, após o quadrado para	$\left(x - \frac{1}{2}\right)^2 - \frac{25}{4} = 0$
manter a igualdade anterior	
Passo 3) Somar $\frac{25}{4}$ em ambos os lados da	$\left(x-\frac{1}{2}\right)^2-\frac{25}{4}+\frac{25}{4}=0+\frac{25}{4}$
igualdade	(2/ 1 1 1
	$\left(x - \frac{1}{2}\right)^2 = \frac{25}{4}$
Passo 4) Extrair a raiz quadrada em ambos os	<u> </u>
lados da igualdade, lembrando que $\sqrt{n^2} = n $.	$\sqrt{\left(x-\frac{1}{2}\right)^2} = \sqrt{\frac{25}{4}}$
lados da igualdade, lembrando que $\sqrt{n^2} = n $.	$\sqrt{\left(x-\frac{1}{2}\right)} = \sqrt{\frac{4}{4}}$
	$\left x - \frac{1}{2} \right = \frac{5}{2}$
	$x - \frac{1}{2} = \frac{1}{2}$ $x - \frac{1}{2} = -\frac{1}{2}$
	5 1 5 1
	$x - \frac{1}{2} = \frac{5}{2} \text{ou} x - \frac{1}{2} = -\frac{5}{2}$ $x = \frac{5}{2} + \frac{1}{2} x = -\frac{5}{2} + \frac{1}{2}$
	x = 3 $x = -2$

3.04) Equações racionais

Equações em que há incógnita no denominador. Antes do processo resolutivo é preciso determinar as condições para a incógnita, tendo em vista que o denominador de uma fração não pode ser zero.

Exemplo:

	$\frac{x+3}{x+2} = \frac{1}{2x-4}$
Condições para a incógnita	Do denominador $x + 2$, temos que $x \neq -2$;
	Do denominador $2x - 4$, temos que $x \neq 2$;
Passo 1) Subtrair $\frac{1}{2x-4}$ de ambos os lados da	$\frac{x+3}{2} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$
igualdade	$\frac{1}{x+2} - \frac{2x-4}{x+3} = \frac{2x-4}{2x-4} - \frac{2x-4}{2x-4}$
	$\frac{x+3}{x+2} - \frac{1}{2x-4} = 0$
Passo 2) Reduzir as frações ao mesmo	$\frac{\frac{x+3}{x+2} - \frac{1}{2x-4} = 0}{\frac{(x+3)(2x-4) - 1(x+2)}{x+2} = 0}$
denominador	x+2
	$\frac{2x^2 - 4x + 6x - 12 - x - 2}{(x+2)(2x-4)} = 0$
	(x+2)(2x-4)
	$\frac{2x^2 + x - 14}{(x+2)(2x-4)} = 0$
Passo 3) Para que uma fração resulte em zero é	$2x^2 + x - 14 = 0$
preciso que o numerador seja zero	Pelo processo resolutivo de equações polinomiais
	do 2º grau:
	$x = \frac{-1 + \sqrt{113}}{4} \text{ ou } x = \frac{-1 - \sqrt{113}}{4}$
	Como ambos valores encontrados para a incógnita
	satisfazem as condições estabelecidas
	previamente, ambos são soluções da equação.

3.05) Equações modulares

Equações em que há incógnita no módulo. Na resolução é preciso utilizar o fato que |a| = b implica que a = b ou a = -b.

Exemplo:

$$|x + 3| = 2x + 5$$

x + 3 = 2x + 5	ou	x + 3 = -(2x + 5)
x = -2		x = _8
		$x=-\frac{1}{3}$

3.06) Equações irracionais

Equações em que há incógnita no radical. Antes do processo resolutivo é preciso determinar as condições para a incógnita, tendo em vista que, quando o índice é par, nem o radicando nem o resultado da radiciação podem ser negativos.

Exemplo:

	$x = 1 + \sqrt{x + 11}$
Condições para a incógnita	Do radical $\sqrt{x+11}$, temos que $x \ge -11$;
	Como $\sqrt{x+11} \ge 0$, observando a equação temos
	que $x \ge 1$.
	Note que $x \ge 1$ satisfaz ambas as condições.
Passo 1) Subtrair 1 de ambos os lados da	$x - 1 = 1 + \sqrt{x + 11} - 1$
igualdade para isolar o radical.	$x - 1 = \sqrt{x + 11}$
Passo 2) Elevar ambos os lados da igualdade ao quadrado	$(x-1)^2 = (\sqrt{x+11})^2$
	$x^2 - 2x + 1 = x + 11$
	$x^2 - 3x - 10 = 0$
	x = 5 ou $x = -2$
	Como $x = -2$ não satisfaz as condições para
	incógnita temos que a única solução da equação
	$\acute{e} x = 5$.

3.07) Inequações polinomiais de 1º grau

O processo resolutivo é análogo ao das equações de 1º grau, com a diferença de que é válida a desigualdade de números reais m > n, ao multiplicarmos (ou dividirmos) ambos os lados por um número real negativo k, temos que mk < nk (análogo para as outras desigualdades).

Exemplo:

	$2x + 3 \le 5x - 7$
Passo 1) Adicionar $-5x - 3$ em ambos os lados da	$2x + 3 - 5x - 3 \le 5x - 7 - 5x - 3$
igualdade	$-3x \le -10$
Passo 2) Dividir ambos os lados da igualdade por	3x 10
-3 (como é um número negativo, a desigualdade	$-\frac{1}{-3} \ge -\frac{1}{-3}$
inverte)	\sim 10
	$\lambda \leq \frac{1}{3}$

3.08) Inequações polinomiais de 2º grau

O processo resolutivo consiste em agrupar termos semelhantes para comparar com zero, escrever o polinômio do 2º grau na forma fatorada, trabalhar com a "regra de sinais" da multiplicação e depois com união de intervalos.

Exemplo:

	$x^2 + 2x + 3 > 3x + 9$
Passo 1) Agrupar termos semelhantes para chegar	$x^2 + 2x + 3 - 3x - 9 > 3x + 9 - 3x - 9$
em um formato de comparação com zero	$x^2 - x - 6 > 0$
Passo 2) Escrever o polinômio de 2º grau na forma	(x-3)(x+2) > 0
fatorada, utilizando suas raízes	
Passo 3) Utilizar a "regra de sinais" da multiplicação	 Um produto de dois fatores é maior que zero quando: os dois fatores são positivos: nesse caso, x > 3 e x > -2, ou simplesmente x > 3. ou os dois fatores são positivos: nesse caso, x < 3 e x < -2, ou simplesmente x < -2.
Passo 4) Unir os intervalos encontrados pela "regra de sinais"	Solução da inequação: $x > 3$ ou $x < -2$ Notação de intervalos: $(-\infty, -2) \cup (3, +\infty)$

3.09) Inequações racionais

O processo resolutivo consiste em comparar uma fração com zero, trabalhar com a "regra de sinais" da divisão e depois com união de intervalos.

	$\frac{x+3}{x+2} > 5$
Condições para a incógnita	Do denominador $x + 2$, temos que $x \neq -2$;
Passo 1) Chegar em um formato de comparação com zero	$\frac{\frac{x+3}{x+2} - 5 > 0}{\frac{x+3-5(x+2)}{\frac{x+2}{-4x-7}} > 0}$
Passo 2) Utilizar a "regra de sinais" da divisão	 Um quociente é maior que zero quando: numerador e denominador são positivos: nesse caso, x < -⁷/₄ e x > -2, ou simplesmente -2 < x < -⁷/₄ ou numerador e denominador são negativos: nesse caso, x > -⁷/₄ e x < -2, o que não é possível.
Passo 3) Unir os intervalos encontrados pela "regra de sinais"	Solução da inequação: $-2 < x < -\frac{7}{4}$ (note que todos os valores de x do intervalo satisfazem a condição para a incógnita) Notação de intervalos: $\left(-2, -\frac{7}{4}\right)$

3.10) Inequações modulares

O processo de resolução consiste na observação das seguintes propriedades de reta real:

$$|a| < b \Rightarrow -b < a < b$$
 e $|a| > b \Rightarrow a < -b$ ou $a > b$

Exemplo:

$$|x + 3| > 2x + 5$$

$$x + 3 > 2x + 5$$

 $x < -2$ ou $x + 3 < -(2x + 5)$
 $x < -\frac{8}{3}$

Solução da inequação: x < -2 (engloba as duas condições)

Notação de intervalos: $(-\infty, -2)$

3.11) Inequações irracionais

Na resolução desse tipo de inequação é preciso observar as propriedades e restrições dos radicais.

Exemplo:

	$x < 1 + \sqrt{x + 11}$
Condições para a incógnita	Do radical $\sqrt{x+11}$, temos que $x \ge -11$.
Passo 1) Subtrair 1 de ambos os lados da igualdade para isolar o radical.	$ \begin{array}{c} x - 1 < 1 + \sqrt{x + 11} - 1 \\ x - 1 < \sqrt{x + 11} \end{array} $
Passo 2) Elevar ambos os lados da igualdade ao quadrado. Se $x-1$ é positivo, ambos os lados da desigualdade geram números positivos, e ao fazer tal procedimento a desigualdade se mantém. Se $x-1$ é positivo, a desigualdade se verifica para qualquer valor de x que satisfaz a condição para a	Se $x - 1$ é positivo ou nulo: $(x - 1)^{2} < (\sqrt{x + 11})^{2}$ $x^{2} - 2x + 1 < x + 11$ $x^{2} - 3x - 10 < 0$ $(x - 5)(x + 2) < 0$ $-2 < x < 5$
incógnita.	Se $x - 1$ é negativo:
	$x - 1 < \sqrt{x + 11}$ para $x \in [-11, 1)$
	Considerando todas as possibilidades para x temos: $-11 \le x < 5$. Notação de intervalos: $[-11,5)$.