Capítulo 5

Funções elementares

Capítulo 5

Funções elementares

O objetivo deste capítulo é fazer um estudo das funções elementares, as quais servem de modelo para a descrição de fenômenos e situações reais, preparando o caminho para a compreensão do Cálculo Diferencial e Integral. Nosso estudo terá como base o capítulo anterior: provavelmente você terá que se deslocar para aquele universo várias vezes. Veremos as funções polinomiais, funções racionais e funções trigonométricas. Use seus conhecimentos de pacotes computacionais para visualizar gráficos; no final do capítulo listaremos alguns deles. Lembre-se que deste estudo dependerá seu sucesso nas disciplinas de Cálculo.

5.1 Funções polinomiais

Estudaremos com detalhes as funções polinomiais de grau um (função afim) e dois (função quadrática). Em seguida faremos alguns comentários sobre as funções polinomiais de outros graus.

5.1.1 Função afim

Uma função $f: \mathbb{R} \to \mathbb{R}$ chama-se função afim quando existem constantes reais a e b tais que f(x) = ax + b, para todo $x \in \mathbb{R}$. O conjunto \mathbb{R} é o "maior" conjunto de valores para os quais é possível encontrar f(x). Quando o domínio não é especificado, estaremos considerando-o como o conjunto \mathbb{R} .

Um exemplo de situação real descrita por uma função afim é o preço a pagar por uma corrida de táxi: o valor da corrida depende da distância percorrida (em km) e dos valores constantes do km rodado e da bandeirada. A distância percorrida em km é multiplicada por uma constante *a* (o valor do km rodado), e a este pro-

duto adiciona-se um valor constante inicial b (que é o valor da bandeirada), resultando no preço a pagar. Assim, a distância percorrida (em km) é a variável independente x e f(x) = ax + b ou y = ax + b é o preço a pagar pela corrida.

Exemplos de funções afins:

1)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$$
 ($a = 3 \text{ e } b = 7$)

2)
$$g: \mathbb{R} \to \mathbb{R}, g(x) = -x + 1$$
 $(a = -1 e b = 1)$

3)
$$h: \mathbb{R} \to \mathbb{R}, h(x) = \frac{1}{2}x - 23$$
 $(a = \frac{1}{2} e b = -23)$

4)
$$k: \mathbb{R} \to \mathbb{R}, k(x) = \sqrt{7}x$$
 $(a = \sqrt{7} e b = 0)$

5)
$$s: \mathbb{R} \to \mathbb{R}, s(x) = 59$$
 $(a = 0 \text{ e } b = 59)$

Casos particulares da função afim

i) a = 0

Neste caso, f(x) = b, $\forall x \in \mathbb{R}$ e a função chama-se função *constante* (veja o exemplo 5). O gráfico da função constante f(x) = b é o conjunto $G(f) = \{(x,b) \in \mathbb{R} \times \mathbb{R} \mid x \in \mathbb{R}\}$, uma reta paralela ao eixo x e que passa pelo ponto (0,b).

Exemplo:

6)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = -3$$

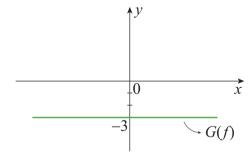


Figura 5.1

Observação 1. Você pode notar que o nome de função *constante* já revela o comportamento da função: independente da variável x, o valor de f(x) é sempre o mesmo.

ii)
$$a = 1$$
 e $b = 0$

Neste caso f(x)=x, $\forall x \in \mathbb{R}$, e esta é a função *identi-dade*, já vista no Capítulo 4. Seu gráfico é o conjunto $G(f)=\{(x,x)\in \mathbb{R}\times \mathbb{R}/x\in \mathbb{R}\}$, a reta que é a bissetriz do primeiro e do terceiro quadrantes.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x$$

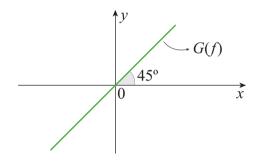


Figura 5.2

iii)
$$b = 0$$
 e $a \ne 0$

Neste caso $f(x) = ax, \forall x \in \mathbb{R}$, e estas são chamadas funções *lineares*. O gráfico de uma função linear é o conjunto $G(f) = \{(x, ax) \in \mathbb{R} \times \mathbb{R} \mid x \in \mathbb{R}\}$, uma reta que passa pela origem do plano cartesiano, uma vez que f(0) = 0.

Exemplos:

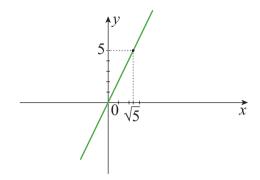
$$7) \ f(x) = -\frac{x}{5}$$

x	y = f(x)
0	0
10	-2



Figura 5.3

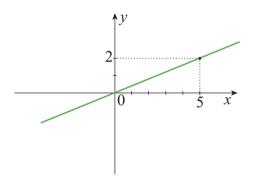
8)
$$f(x) = \sqrt{5}x$$



х	y = f(x)
0	0
$\sqrt{5}$	5

Figura 5.4

9)
$$f(x) = \frac{2}{5}x$$



x	y = f(x)
0	0
5	2

Figura 5.5

Gráfico de uma função afim

Seja $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b. Podemos considerar $a \neq 0$, uma vez que já conhecemos o gráfico da função constante.

Proposição. O gráfico G(f) da função f(x) = ax + b é uma reta.

Demonstração: Sejam $P(x_1,y_1),Q(x_2,y_2)$ e $S(x_3,y_3)$ pontos quaisquer do gráfico de f. Nosso objetivo é mostrar que estes três pontos são colineares, isto é, estão alinhados. Lembrando que o gráfico é o conjunto dos pares ordenados (x,f(x)), podemos escrever: $y_1 = ax_1 + b, \ y_2 = ax_2 + b$ e $y_3 = ax_3 + b$. Veja a figura:

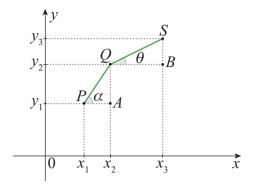


Figura 5.6

Os triângulos PAQ e QBS são triângulos retângulos. As tangentes dos ângulos α e θ são dadas pelas razões $\frac{AQ}{AP}$ e $\frac{BS}{BO}$:

$$\frac{AQ}{AP} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{ax_2 + b - (ax_1 + b)}{x_2 - x_1}$$

$$= \frac{ax_2 + b - ax_1 - b}{x_2 - x_1} = \frac{a(x_2 - x_1)}{x_2 - x_1} = a$$

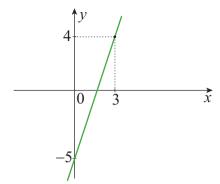
Analogamente, temos que
$$\frac{BS}{BQ} = \frac{y_3 - y_2}{x_3 - x_2} = a$$
. Assim, $\frac{AQ}{AP} = \frac{BS}{BQ}$.

E como os ângulos em A e B são retos, segue que os triângulos PAQ e QBS são semelhantes e assim os ângulos α e θ são iguais. Conclui-se daí que os pontos P,Q e S estão alinhados. Como P,Q e S são pontos quaisquer do gráfico, fica provado que o gráfico da função afim é uma reta.

Consequência: O gráfico de uma função afim fica completamente determinado por apenas dois pontos (lembre-se que existe uma única reta que passa por dois pontos).

Exemplos:

10) Esboçar o gráfico da função f(x) = 3x - 5

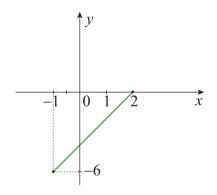


x	y = f(x)
0	-5
3	4

Figura 5.7

Observação 2. Uma função afim pode estar definida em um intervalo, isto é, podemos restringir seu domínio a um intervalo. Neste caso, seu gráfico é um segmento de reta. Veja o exemplo 11:

11)
$$f:[-1,2] \to \mathbb{R}, f(x) = 2x - 4$$
.



x	y = f(x)
-1	-6
2	0

Figura 5.8

Observação 3. Se f(x) = ax + b, chamamos o número a de "coeficiente angular da reta" que representa o gráfico da função f, ou "taxa de crescimento da função f". Note que $a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$, para quaisquer números reais x_2 e x_1 . Veja a figura:

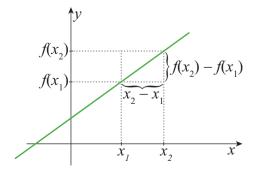
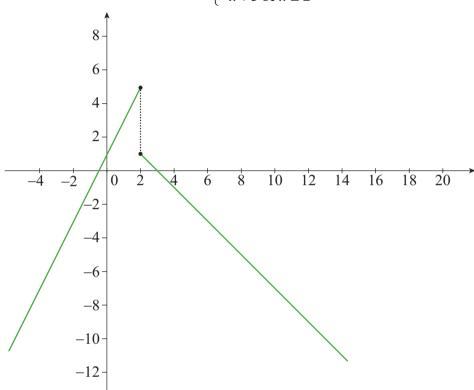


Figura 5.9

Exercício resolvido

1) Fazer o gráfico da função definida por:

$$h(x) = \begin{cases} 2x + 1 \text{ se } x < 2\\ -x + 3 \text{ se } x \ge 2 \end{cases}$$



- 2) Seja f(x) = ax + b. Mostre que:
 - a) se a > 0, f é crescente;
 - b) se a < 0, f é decrescente.

Resolução.

a) Sabemos do Capítulo 4 que:

"Uma função é crescente em um conjunto A de seu domínio se e somente se $x_1 < x_2$ implica $f(x_1) < f(x_2)$, para todos x_1 e x_2 no conjunto A".

Como o domínio de $f \in \mathbb{R}$, vamos considerar $x_1 \in x_2$ dois números reais quaisquer, com $x_1 < x_2$. Pela Obs. 3 sabemos que

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

e neste caso podemos escrever $f(x_2)-f(x_1)=a(x_2-x_1)$. Por hipótese, temos a>0 e também estamos considerando $x_1< x_2$, o que significa $x_2-x_1>0$. Então, $a(x_2-x_1)>0$. Assim, $a(x_2-x_1)=f(x_2)-f(x_1)>0$, ou seja, $f(x_1)< f(x_2)$. Logo, f é crescente.

b) Do Capítulo 4 sabemos que:

"Uma função f é decrescente em um conjunto A de seu domínio se e somente se $x_1 < x_2$ implica $f(x_1) > f(x_2)$, para todos x_1 e x_2 no conjunto A".

Consideremos então x_1 e x_2 dois números reais quaisquer, com $x_1 < x_2$; então $x_2 - x_1 > 0$ e como por hipótese a < 0, teremos $a(x_2 - x_1) > 0$. Logo, $f(x_2) - f(x_1) = a(x_2 - x_1) < 0$, o que significa que $f(x_1) > f(x_2)$. Concluímos então que f é decrescente.

Inversa de uma função afim

Com exceção das funções constantes, toda função afim é inversível. Isto acontece porque as funções afins são bijetoras (prove isso como exercício!). Vamos fazer um exemplo de como encontrar a inversa de uma função afim:

Exemplo:

12) Calcular a inversa da função $f: \mathbb{R} \to \mathbb{R}, f(x) = 5x + 1$

Resolução. Estamos procurando uma função $g: \mathbb{R} \to \mathbb{R}$ tal que f(g(x)) = x e g(f(x)) = x para todo x real (lembre-se da definição de função inversa, no Capítulo 4). Então fazemos: $f(g(x)) = 5 \cdot g(x) + 1 = x$

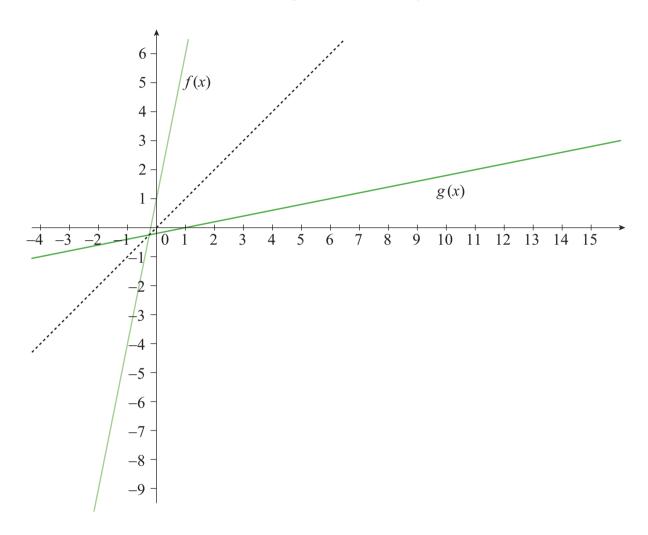
A segunda igualdade nos dá a função procurada:

$$g(x) = \frac{x-1}{5}$$

Também se verifica que

$$g(f(x)) = \frac{f(x)-1}{5} = \frac{5x+1-1}{5} = \frac{5x}{5} = x$$

Assim, g é a função inversa de f e é anotada f^{-1} : $f^{-1}(x) = \frac{x-1}{5}$ Vamos fazer os gráficos de f e de f^{-1} no mesmo sistema de eixos.



Exercícios propostos

1) Faça o gráfico das funções:

a)
$$f(x) = -\frac{1}{13}x + \frac{3}{5}$$

b)
$$h(x) = \sqrt{2}x$$

c)
$$g(x)=6$$

d)
$$k:(-1,1) \to \mathbb{R}, k(x) = -3x + 2$$

e)
$$s(x) = \begin{cases} x+1 & \text{se } x \ge 0 \\ -x+1 & \text{se } x < 0 \end{cases}$$

- 2) Defina a função afim cujo gráfico contém os pontos (1,5) e (-9,10).
- 3) Encontre a inversa das funções:
 - a) f(x) = -4x 1
 - b) $g(x) = \frac{x-1}{8}$
 - c) h(x) = 7x
- 4) Para $f(x) = \frac{45}{100}x \frac{2}{3}$, calcule x de modo que $f(x) = \frac{7}{5}$.

5.1.2 Funções quadráticas

Definição. Uma função $f: \mathbb{R} \to \mathbb{R}$ chama-se quadrática (ou função polinomial do segundo grau) se existem constantes reais a, b e c, com $a \ne 0$, tais que $f(x) = ax^2 + bx + c$.

Exemplos:

13)
$$f(x) = 5x^2 - 2x$$
 $(a = 5, b = -2, c = 0)$

14)
$$g(x) = \pi x^2 + 1$$
 $(a = \pi, b = 0, c = 1)$

15)
$$h(x) = x^2 + 7x - \frac{1}{2}$$
 $\left(a = 1, b = 7, c = -\frac{1}{2}\right)$

Observação 4. Não confunda a *função quadrática* com a *equação do segundo grau*! Muitas vezes vemos também a expressão *função do segundo grau*, que não está correta, uma vez que não há definição do que seja o *grau* de uma função.

Você sabe a diferença?

Observação 5. Resolução de problemas que utilizam uma função quadrática ou uma equação do segundo grau, estão entre os mais antigos da matemática.

Raízes da função quadrática

As raízes da função quadrática $f(x) = ax^2 + bx + c$ são os valores x para os quais se tem f(x) = 0, ou seja, $ax^2 + bx + c = 0$ (esta é uma

equação do segundo grau). As raízes da equação f(x) = 0 também são chamadas de raízes da função quadrática f(x).

Observação 6.

- Se $\Delta = b^2 4ac > 0$, temos duas raízes reais distintas.
- Se $\Delta = b^2 4ac < 0$, não existem raízes *reais* para a função f(x). Neste caso as raízes serão *números complexos* dados por

$$x_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$$
 ou $x_2 = \frac{-b - i\sqrt{|\Delta|}}{2a}$, com $i = \sqrt{-1}$.

• Se $\Delta = 0$, temos duas raízes reais e iguais, $x_1 = x_2 = \frac{-b}{2a}$.

Gráfico da função quadrática

Aprendemos que o gráfico de uma função quadrática é sempre uma *parábola*. Mas o que é uma parábola?

Definição. Dados um ponto F no plano e uma reta d que não contém F, a parábola é o lugar geométrico dos pontos do plano que estão à mesma distância de F e de d. O ponto F é o foco da parábola e d é a reta diretriz.

Observação 7. Uma parábola é então uma curva no plano, que é simétrica, sendo o eixo de simetria a reta que contém o foco F e que é perpendicular à reta diretriz. Veja a figura:

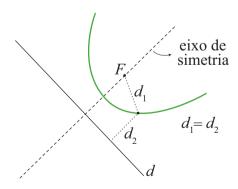
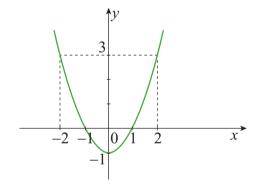


Figura 5.10

A parábola é a curva que serve de modelo para o gráfico da função quadrática. Mas nem toda parábola é o gráfico de uma função deste tipo. As parábolas que serão gráficos de funções quadráticas são aquelas cujo eixo de simetria é paralelo ao eixo Y. Com estas informações, como comentamos no Capítulo 4, alguns pontos, obtidos atribuindo valores à variável independente x, são suficientes para esboçar o gráfico de uma função quadrática. Valores especiais da variável independente x são as raízes e x=0. Lembre-se que as raízes são tais que f(x)=0. Assim, os pontos (x,0), x real, são pontos de intersecção da curva com o eixo X; dizemos também que a curva "corta" o eixo X nos pontos (x,0). Para x=0 temos f(0)=c (pois $f(x)=ax^2+bx+c$), e (0,c) é o ponto de intersecção da curva com o eixo Y (ou o ponto onde a curva "corta" o eixo Y).

Exemplo:

16) Esboçar o gráfico da função $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 - 1$



x	y = f(x)		
0	-1		
1	0		
-1	0		
2	3		
-2	3		

Figura 5.11

Concavidade, vértice e imagem da função quadrática

Considere a função $f(x) = ax^2 + bx + c$, com $a \ne 0$. Podemos escrever

$$f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left[\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}\right].$$
 Para chegar à ex-

pressão entre colchetes, reveja o item (2) da seção 2.7.

A expressão $\left(x + \frac{b}{2a}\right)^2$ é sempre maior do que ou igual a zero e atinge o seu menor valor, que é zero, quando $x = \frac{-b}{2a}$.

A expressão $\frac{4ac-b^2}{4a^2}$ independe de x, ou seja, é uma constante.

Portanto, a expressão entre colchetes atinge o seu menor valor quan-

do
$$x = \frac{-b}{2a}$$
.

mostra a figura:

Suponhamos a > 0. Então $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a^2} \right]$ atinge o seu menor valor quando $x = \frac{-b}{2a}$.

Isto significa que para $x = \frac{-b}{2a}$ o valor f(x) é o menor possível, ou ainda, $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$ é o ponto do gráfico de f que possui a menor ordenada. Podemos então concluir que a parábola neste caso é côncava para cima, como mostra a figura:

Figura 5.12

Se a < 0, o sinal de f(x) é contrário ao sinal da expressão $\left[\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}\right]$. Então f(x) atinge o seu maior valor quando $x = \frac{-b}{2a}$, ou seja, $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$ é o ponto do gráfico de f que possui maior ordenada. Neste caso, a parábola é *côncava para baixo*, como

Figura 5.13

O ponto $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$ é chamado de *vértice* da parábola. Calculando $f\left(\frac{-b}{2a}\right)$ obtemos o ponto $\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$. Assim, o vértice tem coordenadas $x_v = \frac{-b}{2a}$ e $y_v = \frac{-\Delta}{4a}$.

A reta vertical que passa pelo vértice é o eixo de simetria da parábola.

Note que $y_v = f\left(\frac{-b}{2a}\right) = \frac{-\Delta}{4a}$ é o **menor** valor assumido pela função,

se a>0, e o **maior** valor assumido pela função, se a<0. Isto nos dá a informação sobre o conjunto imagem da função f:

- i) Se a > 0, Im $f = [y_v, \infty)$
- ii) Se a < 0, Im $f = (-\infty, y_v]$

Observação 8. Ao esboçar o gráfico de uma função quadrática, é importante saber verificar alguns elementos da parábola:

- a) Concavidade ("posição" dada pelo coeficiente a de x^2);
- b) Pontos onde o gráfico "corta" o eixo X (raízes, determinadas pela solução da equação f(x) = 0);
- c) Ponto onde o gráfico "corta" o eixo Y (cálculo de f(0), ou termo independente);
- d) Vértice (ponto $\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$);
- e) Eixo de simetria (reta $x = \frac{-b}{2a}$).

Exercício resolvido

3) Esboçar o gráfico da função quadrática $f(x) = -2x^2 + 7x + 4$

Resolução. Temos inicialmente a = -2, b = 7 e c = 4.

Seguindo o roteiro acima, observamos que:

- a) a = -2 < 0: a parábola é côncava para baixo.
- b) os pontos onde o gráfico corta o eixo X são os pontos para os quais f(x)=0, ou seja, as raízes da equação $-2x^2+7x+4=0$. Vamos calculá-las.

$$-2x^2 + 7x + 4 = 0$$
 é equivalente a $2x^2 - 7x - 4 = 0$

(multiplicamos ambos os membros por -1).

Assim,
$$x = \frac{7 \pm \sqrt{49 + 32}}{4}$$
 e temos as raízes $x_1 = -\frac{1}{2}ex_2 = 4$.

Logo, os pontos onde o gráfico "corta" o eixo X são

$$\left(-\frac{1}{2},0\right)$$
 e (4,0).

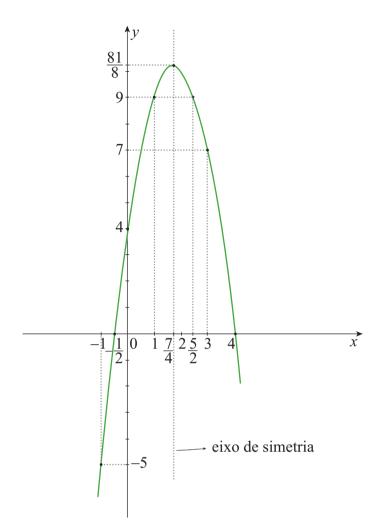
- c) O ponto onde o gráfico de f corta o eixo Y é o valor de f no ponto 0, ou seja, $f(0) = -2 \cdot 0 + 7 \cdot 0 + 4 = 4$. Assim, este ponto é (0,4).
- d) O vértice é dado por:

$$x_v = \frac{-b}{2a} = \frac{-7}{-4} = \frac{7}{4}$$

$$y_v = f\left(\frac{7}{4}\right) = \frac{-\Delta}{4a} = \frac{-(49+32)}{4\cdot(-2)} = \frac{-81}{-8} = \frac{81}{8}$$

O vértice é o ponto $\left(\frac{7}{4}, \frac{81}{8}\right)$.

Vamos encontrar mais alguns pontos e fazer o gráfico:



х	y = f(x)
-1	-5
1	9
<u>5</u> 2	9

Figura 5.14

Observe que a imagem da função f é o intervalo $(-\infty, y_v] = \left(-\infty, \frac{81}{8}\right]$, que é a projeção ortogonal de seu gráfico no eixo das ordenadas.

Aplicação

A função quadrática serve de modelo para resolução de problemas de maximização e de minimização. Faremos dois exemplos de problemas cuja resolução depende da análise e interpretação do gráfico de uma função quadrática.

Problema 1. Entre todos os retângulos de perímetro 12 u.m., quais as dimensões daquele que possui maior área?

Resolução. Chamamos de x e y as dimensões do retângulo e $S=x\cdot y$ a sua área. Vamos escrever S como função de x usando o outro dado do problema, isto é, que o perímetro é 12 u.m. O perímetro é dado por 2x+2y=12. Então x+y=6 e y=6-x. Substituindo y na expressão da área, obtemos $S(x)=x\cdot(6-x)=6x-x^2$. Temos assim uma função quadrática S(x) que expressa a área de um retângulo de perímetro 12 u.m. em função de uma de suas dimensões. Estamos procurando o valor máximo desta área, e isto significa que estamos procurando o valor máximo da função quadrática $S(x)=6x-x^2$, ou $S(x)=-x^2+6x$. O gráfico de S é uma parábola côncava para baixo, pois a=-1<0. Assim, o valor máximo da função S(x) é a ordenada do vértice da parábola. Vamos calcular a abscissa do vértice, lembrando que a=-1 e b=6:

$$x_v = \frac{-b}{2a} = \frac{-6}{-2} = 3$$

Este valor x que encontramos é uma das dimensões do retângulo que tem área máxima. Fazendo y=6-x=6-3=3, encontramos a outra dimensão, y=3. Vemos então que o retângulo de perímetro 12 u.m. que possui a maior área é o quadrado de lado 3.

Resposta. O retângulo de perímetro 12 que possui a maior área é o quadrado de lado 3.

Problema 2. De todos os números reais x e y tais que x+5y=10, determine aqueles para os quais o valor $x^2 + y^2$ seja mínimo.

Resolução. Chamamos de M o valor que queremos minimizar, ou seja, $M=x^2+y^2$. Vamos escrever M em função de um dos números: se x+5y=10, temos que $y=\frac{10-x}{5}$ e, portanto,

$$M(x) = x^{2} + \left(\frac{10 - x}{5}\right)^{2} = \frac{1}{25} \cdot (26x^{2} - 20x + 100)$$
$$= \frac{26}{25}x^{2} - \frac{4}{5}x + 4$$

M é uma função quadrática com $a = \frac{26}{25}$, $b = -\frac{4}{5}$ e c = 4.

Como a>0, a parábola que representa o gráfico de M é côncava para cima, indicando que M tem um valor mínimo no vértice. Vamos calcular este vértice:

$$x = \frac{-b}{2a} = \frac{-\frac{4}{5}}{2 \cdot \frac{26}{25}} = \frac{5}{13}.$$

Calculando o valor y, obtemos $y = \frac{10-x}{5} = \frac{10-\frac{5}{13}}{5} = \frac{25}{13}$. O valor

mínimo de
$$x^2 + y^2$$
 será $M = \left(\frac{5}{13}\right)^2 + \left(\frac{25}{13}\right)^2 = \frac{650}{169} = \frac{50}{13}$.

Resposta. Os números procurados são $x = \frac{5}{13}$ e $y = \frac{25}{13}$.

Exercícios resolvidos

4) Faça o gráfico e determine o conjunto imagem da função

$$f(x) = \begin{cases} -x+5 & \text{se } x < -2 \\ x^2 - 6 & \text{se } -2 \le x < 3 \\ \frac{9}{2} & \text{se } 3 \le x \le 4 \\ 2x & \text{se } x > 4 \end{cases}$$

Resolução. A função é dada por quatro sentenças:

- -x+5 no intervalo $(-\infty, -2)$, que é uma função afim;
- $x^2 6$ no intervalo [-2,3), que é uma função quadrática;
- $\frac{9}{2}$ no intervalo [3,4], que é uma função constante;
- 2x no intervalo $(4,+\infty)$, que é uma função linear.

Fazendo o gráfico correspondente em cada intervalo, teremos:

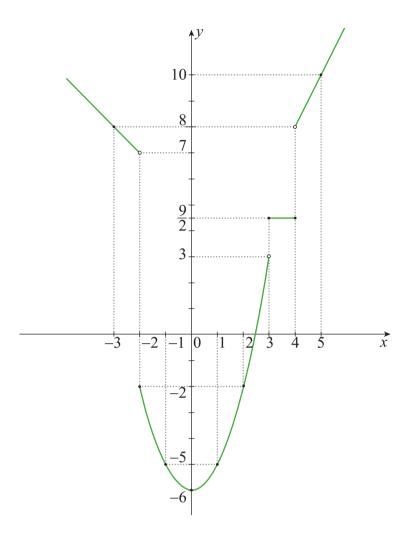


Figura 5.15

A imagem da função é a projeção ortogonal do seu gráfico no eixo das ordenadas. Assim, $\operatorname{Im} f = [-6,3) \cup \left\{\frac{9}{2}\right\} \cup (7,+\infty)$.

5) Esboce num mesmo sistema cartesiano os gráficos das funções:

$$f(x) = x^2, g(x) = \frac{1}{2}x^2, h(x) = 2x^2.$$

O que você pode observar quando variamos o coeficiente a?

Resolução:

f(x)	$=x^2$	$g(x) = \frac{1}{2}x^2$		$h(x) = 2x^2$	
x	У	x	У	x	У
0	0	0	0	0	0
1	1	1	$\frac{1}{2}$	1	2
- 1	1	- 1	$\frac{1}{2}$	- 1	2
2	4	2	2	2	8

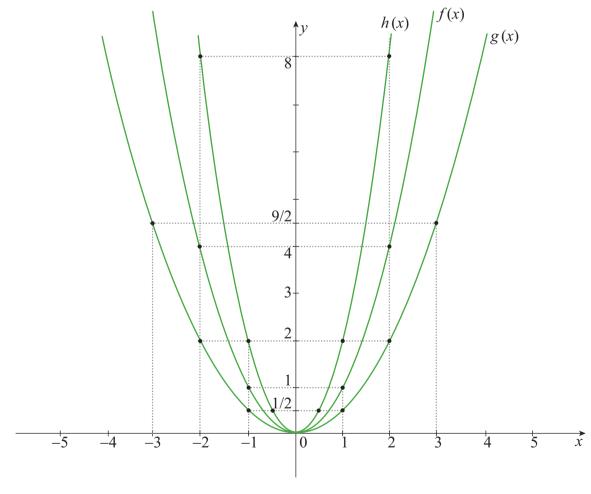


Figura 5.16

Observando o coeficiente a>0, vemos que ele determina a "abertura" da parábola. Quanto menor o valor de a, maior é a "abertura".

6) Determine o maior valor de k em $A = \{x \in \mathbb{R} / x \le k\}$ de modo que a função f de A em \mathbb{R} definida por $f(x) = 2x^2 - 3x + 4$ seja injetora.

Resolução. Vamos lembrar a definição de função injetora do capítulo 4:

Dizemos que f é injetora em A se e somente se

$$\forall x_1, x_2 \in A$$
, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.

Ou, equivalentemente:

$$\forall x_1, x_2 \in A$$
, se $x_1 = x_2$, então $f(x_1) = f(x_2)$.

Sabemos que o gráfico de uma função quadrática é uma parábola e que a parábola tem um *eixo de simetria* que passa pelo vértice e é paralelo ao eixo Y. Isto nos sugere que existem valores diferentes no domínio que possuem a mesma imagem. Vamos então fazer o gráfico de f como se $\mathbb R$ fosse seu domínio, e analisar que restrição devemos fazer neste domínio para que a função seja injetora. Seguindo o roteiro para construção do gráfico, observamos que:

- a) O gráfico da função $f(x) = 2x^2 3x + 4$ é uma parábola côncava para cima (pois a = 2 > 0).
- b) Suas raízes não são números reais, pois $\Delta=9-32=-23<0$. Então o gráfico não "corta" (ou não intersecta) o eixo X e a parábola está situada acima do eixo X (por quê?).
- c) O gráfico corta o eixo Y no ponto (0,4).
- d) O vértice tem coordenadas $x_v = \frac{3}{4}$, $y_v = \frac{23}{8}$. Conseqüentemente, a imagem da função é $\left[\frac{23}{8}, +\infty\right)$ e o eixo de simetria passa pelo ponto $\left(\frac{3}{4}, \frac{23}{8}\right)$.

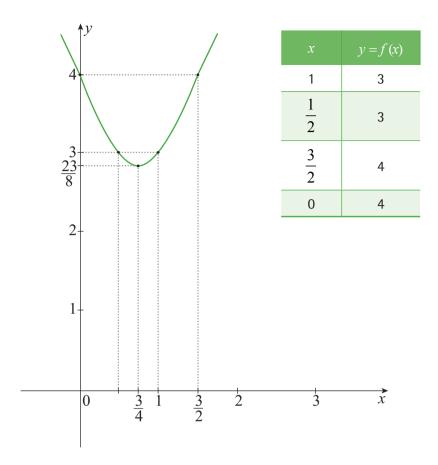


Figura 5.17

Analisando o gráfico, para que a função seja injetora, devemos considerar uma das "metades" da parábola (ou uma parte menor), determinadas pelo eixo de simetria. As projeções das "metades" no eixo X são os intervalos $\left(-\infty,\frac{3}{4}\right]$ e $\left[\frac{3}{4},+\infty\right)$. Como o enunciado estabelece que o domínio de f é $A=\left\{x\in\mathbb{R}\,|\,x\leq k\right\}$, ou seja, $A=(-\infty,k]$, é necessário tomar para valores de x aqueles à esquerda do vértice, ou seja, menores ou iguais do que $x_v=\frac{3}{4}$. Assim, qualquer valor de k menor ou igual a $\frac{3}{4}$ satisfaz a propriedade. O maior deles é $k=\frac{3}{4}$ e f será injetora no intervalo $A=\left(-\infty,\frac{3}{4}\right]$.

Exercícios propostos

- 5) Estude as funções dadas abaixo, determinando raízes, vértice, pontos de intersecção com os eixos, eixo de simetria, gráfico e conjunto imagem:
 - a) $f(x) = -x^2 x + 6$
 - b) $f(x) = 5x^2 2x + 4$
 - c) f(x) = (3-x)(x+1)
 - d) $f(x) = -2x^2 16x$
 - e) $f(x) = 4 x^2$
 - f) $f(x) = -(3-x)^2$
 - g) $f(x) = \frac{1}{2}x^2 x + 1$
 - h) $f(x) = -(4-3x^2)$
- 6) Encontre o valor x de modo que $f(x) = x^2 3x + 2 = \frac{1}{2}$.
- 7) Determine o valor b em $B = \{x \in \mathbb{R} / x \ge b\}$ de modo que a função f de \mathbb{R} em B definida por $f(x) = x^2 4x + 6$ seja sobrejetora.
- 8) A soma de dois números reais é 6 . Encontre estes dois números sabendo que seu produto é máximo.
- 9) Em cada item a seguir, encontre a função quadrática que satisfaz as condições dadas:
 - a) f(0) = 5, f(1) = 10, f(-1) = 4
 - b) o vértice do gráfico de g é (1,2) e g intercepta o eixo Y em (0,4).
 - c) o valor máximo de h é 10; o gráfico de h é simétrico em relação à reta x = -1 e h intercepta o eixo Y em (0,8).
 - d) o gráfico de t intercepta o eixo x nos valores x = 1 e x = 3, e intercepta o eixo Y em (0,8).