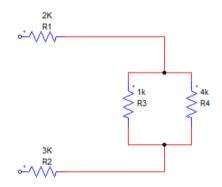


Eixo Tecnológico

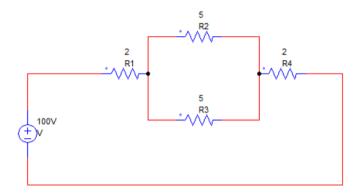

Controle e Processos Industriais

Título: Exercícios sobre Associação Mista de Resistores Nome do Professor(a): Mário da Rosa João

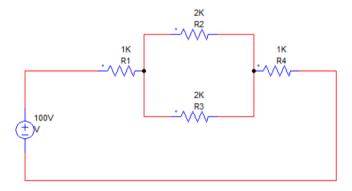
1) Determinar a resistência equivalente do circuito (R_T) mostrado na figura abaixo. Dados: R_1 = 10 k Ω ; R_2 = 20 k Ω ; R_3 = 20 k Ω ; R_4 = 10 k Ω .

2) Determinar a resistência equivalente do circuito (R_T) mostrado na figura abaixo. Dados: $R_1 = 2 k\Omega$; $R_2 = 3 k\Omega$; $R_3 = 1 k\Omega$; $R_4 = 4 k\Omega$.

3) Determinar a resistência equivalente do circuito (R_T) mostrado na figura abaixo. Dados: R_1 = 1,5 k Ω ; R_2 = 3 k Ω ; R_3 = 1 k Ω ; R_4 = 1 k Ω ; R_5 = 1 k Ω .



Eixo Tecnológico


Controle e Processos Industriais

2

4) Determinar a resistência equivalente (R_T); a corrente total (i_T) e a potência total (P_T) do circuito mostrado na figura abaixo. Dados: R_1 = 2 k Ω ; R_2 = 5 k Ω ; R_3 = 5 k Ω ; R_4 = 2 k Ω .

5) Determine as quedas de tensão, correntes e potências em cada resistor do circuito mostrado na figura abaixo. Dados: R_1 = 1 $k\Omega$; R_2 = 2 $k\Omega$; R_3 = 2 $k\Omega$; R_4 = 1 $k\Omega$.

