Exercícios propostos

- 16) Construa os gráficos das seguintes funções:
 - a) f(x) = |4-2x|
 - b) $g(x) = 1 + x + |x| + |x^2 2|$
 - c) $h(x) = \frac{x}{|x|}$
- 17) Dê o domínio e construa o gráfico da função:

$$g(x) = \begin{cases} \frac{x^2 + 2x}{-x} & \text{se } x < 0 \\ \frac{x^2 - 2}{x} & \text{se } x > 0 \end{cases}$$

5.4 Funções trigonométricas

Vamos inicialmente estudar alguns conceitos básicos necessários à compreensão das funções trigonométricas: arco de circunferência, medidas de arcos, ângulo central e arcos côngruos.

Arco de circunferência

Considere uma circunferência qualquer e nela fixe um ponto $\it A$.

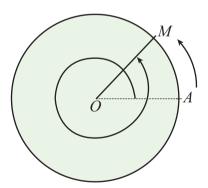


Figura 5.29

Suponha que um ponto móvel desloque-se sobre a circunferência a partir de A, sempre no mesmo sentido, até parar no ponto M.

O caminho percorrido pelo ponto é o $arco \ \widehat{AM}$. Dizemos que \widehat{AM} é um "arco de circunferência".

Todos estes conceitos foram trabalhados nos cursos de Geometria I e II. É conveniente que você tenha bastante clareza destes para prosseguir neste estudo. Se você tem dúvidas, volte àqueles materiais e aprofunde seus conhecimentos. Aqui será apresentada uma revisão sucinta destes conceitos e sua operacionalização.

Pergunta: como medimos este arco? (lembre-se de suas disciplinas de geometria!)

Medidas de arcos

São usadas basicamente duas medidas de arcos: o grau, que você já conhece e é usado há milênios, e o radiano, que você também conhece, unidade que vamos usar em nosso estudo das funções trigonométricas.

Grau: uma circunferência é dividida em 360 partes iguais; cada uma dessas partes é um arco que mede 1 grau. Assim, a circunferência toda mede 360 graus e um arco de x graus corresponde a $\frac{x}{360}$ da circunferência (veja a figura 5.30). Denotamos x graus por x° .

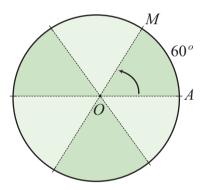


Figura 5.30

Radiano: diz-se que um arco mede um radiano se seu comprimento é igual ao raio da circunferência que o contém (pense que você pode "esticar" o arco e colocá-lo sobre uma régua). A notação para radiano é rad e um radiano corresponde a aproximadamente 57,296 graus.

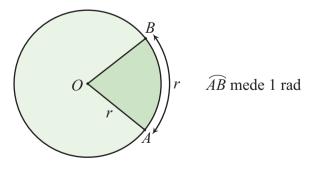


Figura 5.31

Você já se perguntou por que foi feita a divisão em 360 partes e não em 100, por exemplo? A origem dessa escolha é histórica, pois foi criada inicialmente pelos babilônios e também por povos pré-colombianos das Américas (Incas, Maias...), que utilizavam um sistema de numeração com base sexagesimal. Outra explicação é o estabelecimento de uma relação com o chamado movimento de Translação da Terra em torno do Sol, que alguns povos acreditavam se completar em 360 dias.

Exemplos:

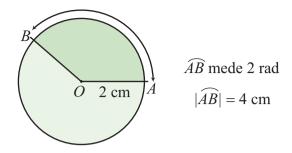


Figura 5.32

A circunferência tem raio de 2 cm e \widehat{AB} mede 2 radianos; seu comprimento em centímetros é 4.

Observação 15. A *medida do arco* é em rad, mas seu *comprimento* pode ser medido em qualquer unidade de comprimento, por exemplo, em centímetros!

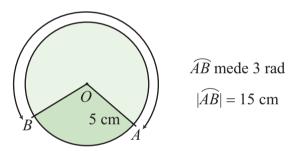


Figura 5.33

Os pontos A e B determinam um arco de 3 rad sobre a circunferência de raio 5 cm; o comprimento do arco \widehat{AB} é 15 cm.

Relação entre grau e radiano

Sabe-se que o comprimento de uma circunferência de raio r é $2\pi r$ (se "esticarmos" a circunferência de raio r sobre uma régua, obtemos a medida de $2\pi r$ na unidade de comprimento do raio). A medida do arco correspondente à circunferência toda é então 2π rad, uma vez que cada arco de comprimento r mede 1 rad. Mas o arco correspondente à circunferência toda também mede 360° , então 360° correspondem a 2π rad ou 180° correspondem a π rad.

Para expressarmos os graus em radianos ou os radianos em graus fazemos uma regra de três.

Didaticamente é importante que seus alunos percebam o porquê da correspondência entre o arco de 180° e sua medida em radianos (π rad), senão os estudantes apenas acreditarão e memorizarão esta informação, sem perceber o que significa. Conseqüentemente, terão dificuldade em operar com ela.

Exemplos:

37) Expresse 135° em radianos.

$$180^{\circ} - - - - \pi \text{ rad}$$

$$135^{\circ} - - - y$$

$$y = \frac{135 \times \pi}{180} = \frac{3\pi}{4} \text{ rad}$$

38) Expresse $\frac{\pi}{6}$ em graus.

$$180^{\circ} - - - - \pi \text{ rad}$$

$$z - - - - \frac{\pi}{6}$$

$$z = \frac{180 \times \frac{\pi}{6}}{\pi} = 30^{\circ}$$

Exercício proposto

- 18) Expresse em radianos:
 - a) 90°
- b) 60°
- c) 45°

- d) 270°
- e) 120°

Ângulo central

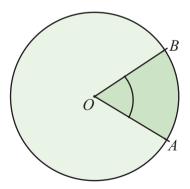


Figura 5.34

Seja O o centro da circunferência e A e B pontos sobre ela. As semi-retas \overrightarrow{OA} e \overrightarrow{OB} determinam o ângulo $A\hat{OB}$. Por definição, a

medida do ângulo central $A\hat{O}B$ é igual à medida do arco \widehat{AB} (em graus ou radianos).

Observação 16. Note que na figura 5.35 a seguir os arcos \widehat{AB} e \widehat{CD} têm a mesma *medida* (em graus ou radianos), mas não têm o mesmo *comprimento*.



Figura 5.35

Isto acontece porque a medida de um arco independe do "tamanho" da circunferência, ou seja, do seu raio. Já o comprimento do arco depende do raio da circunferência que o contém.

Exemplo:

39) Calcule o comprimento L do arco correspondente a um ângulo central de 60° , em uma circunferência de raio 10 cm.

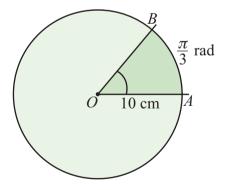


Figura 5.36

Note que a medida de arco que se relaciona com o comprimento é o radiano: um arco mede 1 rad quando seu comprimento é igual ao raio da circunferência que o contém. 60° corresponde a $\frac{\pi}{3}$ rad.

A cada 1 radiano corresponde uma medida do raio, ou seja, 10 cm. A $\frac{\pi}{3}$ rad corresponderá $\frac{\pi}{3} \times 10 = \frac{10\pi}{3}$ cm, ou aproximadamente 10,46 cm (lembre-se que π é um número real, irracional, com representação decimal 3,1415926535... Em geral usaremos para π a aproximação 3,14).

Ciclo trigonométrico ou circunferência trigonométrica

Alguns autores chamam de círculo trigonométrico, como você deve ter estudado em Geometria II. Em trigonometria convencionou-se estabelecer uma orientação sobre a circunferência, fixando nela um sentido de percurso. O ciclo trigonométrico é a circunferência de raio 1, centrada na origem do sistema cartesiano *XOY*, orientada a partir do ponto (1,0). O sentido positivo é o anti-horário e o sentido negativo é horário. O ciclo trigonométrico é o "lugar" onde faremos nosso estudo das funções trigonométricas.

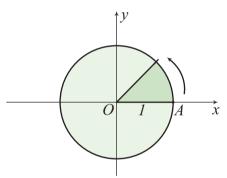


Figura 5.37

Marcamos os arcos no ciclo trigonométrico a partir do ponto A=(1,0), em sentido positivo ou negativo. Veja em seguida os exemplos dos arcos de $\frac{\pi}{4}$ rad e de $-\frac{\pi}{4}$ rad no ciclo trigonométrico:

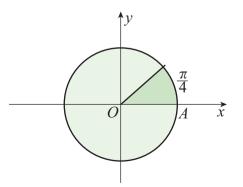


Figura 5.38 - Arco de $\frac{\pi}{4}$ rad

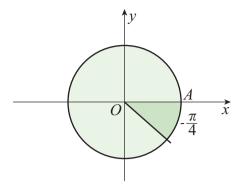


Figura 5.39 - Arco de $-\frac{\pi}{4}$ rad

No ciclo trigonométrico o *comprimento* de um arco é igual ao *módulo de sua medida* em radianos. Se α é a medida do arco em radianos (α pode ser negativo!) e L é o seu comprimento, vimos que $L = |\alpha| \cdot r$ (exemplo 39). Como r = 1, teremos $L = |\alpha|$.

Exemplo:

40) A medida do arco em radianos é $\frac{\pi}{4}$; como o raio é 1, seu comprimento é $\frac{\pi}{4}$ unidades de comprimento. O arco de medida $-\frac{\pi}{4}$ tem o mesmo comprimento.

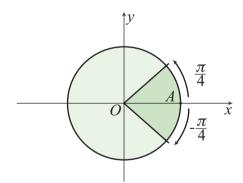


Figura 5.40

Quadrantes

O ciclo trigonométrico tem quatro quadrantes, numerados também a partir do ponto (1,0):

Quadrante I: de 0° ou 0 rad a 90° ou $\frac{\pi}{2}$ rad.

Quadrante II: de 90° ou $\frac{\pi}{2}$ rad a 180° ou π rad.

Quadrante III: de 180° ou π rad a 270° ou $\frac{3\pi}{2}$ rad.

Quadrante IV: de 270° ou $\frac{3\pi}{2}$ rad a 360° ou 2π rad, fechando o círculo.

Veja a figura:

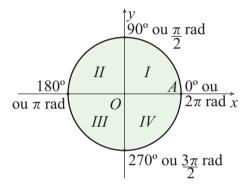


Figura 5.41

Exercício resolvido

4) Localizar no ciclo trigonométrico o arco de medida $\frac{3\pi}{4}$ rad.

Resolução. Note que um arco de medida $\frac{3\pi}{4}$ rad corresponde a 3 arcos sucessivos de $\frac{\pi}{4}$ rad, isto é, $\frac{3\pi}{4} = 3 \times \frac{\pi}{4}$. Como a circunferência mede 2π , um arco de $\frac{\pi}{4}$ corresponde a um oitavo da circunferência: $\frac{2\pi}{8} = \frac{\pi}{4}$. Assim, o arco de medida $\frac{3\pi}{4}$ corresponde a três oitavos da circunferência. Veja a figura:

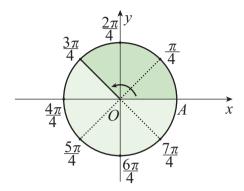


Figura 5.42

Exercícios propostos

- 20) O ciclo trigonométrico foi dividido em oito partes iguais. Localize sobre ele a extremidade B do arco \widehat{AB} , sendo dada a medida deste arco:
 - a) 135°
 - b) -180°
 - c) $\frac{5\pi}{4}$ rad
 - d) $-\frac{\pi}{2}$ rad
 - e) $-\frac{3\pi}{4}$ rad
- 21) Localize no ciclo trigonométrico a extremidade B dos arcos \widehat{AB} de medida:
 - a) 120°
 - b) 330°
 - c) $-\frac{11\pi}{6}$ rad
 - d) $\frac{4\pi}{3}$ rad
 - e) $\frac{7\pi}{6}$ rad

Arcos côngruos

Suponha que um ponto móvel (como na definição de arco) desloque-se sobre a circunferência a partir de (1,0), sempre no mesmo sentido, até parar em $\frac{\pi}{4}$. Temos duas possibilidades: o ponto pára em $\frac{\pi}{4}$ assim que o atinge ou o ponto dá certo número de voltas na circunferência antes de parar em $\frac{\pi}{4}$. Observe na figura 5.43 que o arco de $\frac{\pi}{4}$ rad tem a mesma extremidade que os arcos $\frac{\pi}{4} + 2\pi$ rad, $\frac{\pi}{4} + 4\pi$ rad, $\frac{\pi}{4} + 6\pi$ rad,..., $\frac{\pi}{4} + k\pi$,... para todo inteiro k. Os valores negativos de k também produzem arcos de mesma extremidade que $\frac{\pi}{4}$, resultantes do movimento em sentido horário (sentido negativo): $\frac{\pi}{4} - 2\pi$ rad, $\frac{\pi}{4} - 4\pi$ rad, $\frac{\pi}{4} - 6\pi$ rad...

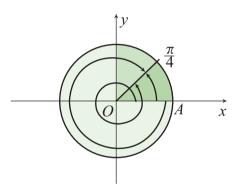


Figura 5.43

Côngruo

É um termo derivado da palavra congruente que, matematicamente, refere-se a objetos de mesma medida.

Genericamente, se B é a extremidade de um arco de α rad, então B é a extremidade de todos os arcos $\alpha + 2k\pi$ rad, para todo k inteiro. Dois arcos são côngruos quando têm a mesma extremidade, isto é, diferem entre si por um múltiplo inteiro de 2π . Para medidas em graus, dois arcos são côngruos quando têm a mesma extremidade e diferem entre si por um múltiplo inteiro de 360°. Percebemos assim que quando marcamos a extremidade de um arco no ciclo trigonométrico, estamos na verdade marcando a extremidade de uma infinidade de arcos. Chamamos de *primeira determinação positiva* (abreviamos pdp) de um arco de medida α rad ao arco côngruo a α cuja medida é β , com $0 \le \beta \le 2\pi$. Para medidas em graus, a primeira

determinação positiva (pdp) de um arco de x° é o arco côngruo a x cuja medida é y para $0 \le y \le 360^{\circ}$.

Como exemplo, vamos encontrar a pdp do arco de medida $\frac{20\pi}{7}$.

Procuramos o maior múltiplo de 7 menor do que 20. Como $20 = 2 \times 7 + 6$, este múltiplo é 14 e podemos escrever

Você lembra do Algoritmo da Divisão, estudado em Fundamentos I?

$$\frac{20\pi}{7} = \frac{(14+6)\pi}{7} = \frac{14\pi}{7} + \frac{6\pi}{7} = 2\pi + \frac{6\pi}{7}.$$

Como $0 \le \frac{6\pi}{7} \le 2\pi$, e os arcos de medidas $\frac{20\pi}{7}$ e $\frac{6\pi}{7}$ diferem de um múltiplo inteiro 2π (pois $\frac{20\pi}{7} - \frac{6\pi}{7} = 2\pi$), a pdp de $\frac{20\pi}{7}$ será $\frac{6\pi}{7}$.

Exercícios resolvidos

7) Encontrar a pdp do arco de medida $\frac{47\pi}{6}$.

Resolução. Como $47 = 7 \times 6 + 5$, escrevemos:

$$\frac{47\pi}{6} = \frac{(42+5)\pi}{6} = 7\pi + \frac{5\pi}{6}$$

Note que 7π não é um múltiplo de 2π ; neste caso fazemos $7\pi=6\pi+\pi$. Então:

$$7\pi + \frac{5\pi}{6} = 6\pi + \pi + \frac{5\pi}{6} = 6\pi + \frac{11\pi}{6}$$

Assim, $\frac{47\pi}{6} - \frac{11\pi}{6} = 6\pi$, o que significa que os arcos de medida $\frac{47\pi}{6}$ e $\frac{11\pi}{6}$ diferem por um múltiplo inteiro de 2π . Também $0 \le \frac{11\pi}{6} \le 2\pi$. A pdp será então $\frac{11\pi}{6}$. Veja a figura:

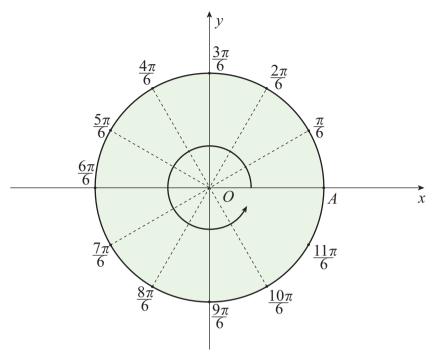
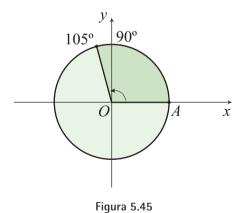


Figura 5.44

8) Encontre a pdp do arco de medida 465°.

Resolução. 465 é maior do que 360; logo, este arco tem mais de uma volta.

Como $465 = 1 \times 360 + 105$, a pdp do arco de medida 465° será 105° . Veja a figura:



Exercícios propostos

21) Determinar a pdp dos arcos cujas medidas são:

a)
$$\frac{17\pi}{4}$$

- b) $-\frac{43\pi}{8}$
- c) 615°
- d) -1330°
- 22) Dê a medida de três arcos cuja pdp é $\frac{4\pi}{5}$.
- 23) Dê a medida de três arcos cuja pdp é 120°.

5.4.1 Função seno e função cosseno

As funções trigonométricas constituem um tema importante da Matemática, tanto por suas aplicações (que vão desde as mais elementares, no dia-a-dia, até as mais complexas, na Ciência e na alta tecnologia) como pelo papel central que desempenham na Análise.

O objetivo inicial da Trigonometria era o tradicional problema da resolução de triângulos, que consiste em determinar os seis elementos dessa figura (três lados e três ângulos) quando se conhecem três deles, sendo pelo menos um deles um lado. Posteriormente, com a criação do Cálculo Infinitesimal, e o seu prolongamento, que é a Análise Matemática, surgiu a necessidade de atribuir às noções de seno, cosseno e suas associadas tangente, cotangente, secante e cossecante, o *status* de função real de uma variável real. Assim, por exemplo, além de $\cos \alpha$, cosseno do ângulo α , tem-se também $\cos x$, o cosseno do número real x, isto é, a função $\cos \mathbb{R} \to \mathbb{R}$.

Analogamente há também as funções seno, tangente, cotangente, secante e cossecante, completando as funções trigonométricas.

Uma propriedade fundamental das funções trigonométricas é que elas são periódicas. Por isso, são especialmente adequadas para descrever os fenômenos de natureza periódica, oscilatória ou vibratória: movimento de planetas, som, corrente elétrica alternada, circulação do sangue, batimentos cardíacos, etc.

Quando se opera com números sen x, cos x e tg x no triângulo retângulo, x representa a medida de um ângulo agudo. Vamos es-

tender as noções de seno, cosseno, tangente, cotangente, secante e cossecante de x para o caso em que x representa a medida de um ângulo qualquer. Nesta situação usaremos como medida o radiano.

Seja x um número real e considere no ciclo trigonométrico o ponto P tal que o arco \widehat{AP} tenha medida x rad. Este ponto P é determinado quando "enrolamos" o segmento de comprimento x no ciclo trigonométrico a partir do ponto A. Se x é positivo, este procedimento é no sentido anti-horário; se x é negativo, o sentido é horário. Os valores seno e cosseno de x são as coordenadas do ponto P. Veja a figura:

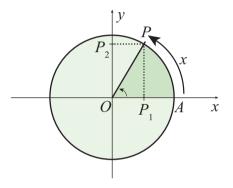


Figura 5.46

Podemos então definir:

Definição. O seno do ângulo de medida x rad ou o seno do número real x (ou do arco \widehat{AP}) é a ordenada do ponto P; o cosseno do número real x (ou do arco \widehat{AP}) é a abscissa do ponto P. Como as coordenadas de um ponto são únicas, ficam definidas as funções seno e cosseno:

$$\operatorname{sen}: \mathbb{R} \to \mathbb{R} \qquad \cos: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \operatorname{sen} x \qquad x \mapsto \cos x$$

Na figura 5.46, sen $x = \overline{OP_2}$ e $\cos x = \overline{OP_1}$.

Domínio e Imagem das funções seno e cosseno

O domínio das funções seno e cosseno é o conjunto dos números reais: a *todo número real x* podemos associar um ponto P no ciclo trigonométrico e este ponto P terá duas coordenadas: a ordenada

(marcada no eixo Y) será sen x e a abscissa (marcada no eixo X) será $\cos x$.

Como estas coordenadas estão limitadas pelo ciclo trigonométrico, a imagem das funções seno e cosseno é o intervalo [1, –1].

Relação fundamental

Decorre do Teorema de Pitágoras que $\sec^2 x + \cos^2 x = 1$, para todo x real. De fato, é só considerar o triângulo retângulo OP_1P . Os segmentos $\overline{OP_1}$ e $\overline{P_1P}$ que correspondem a $\cos x$ e $\sin x$, respectivamente, são os catetos; o segmento \overline{OP} é a hipotenusa. Veja a figura:

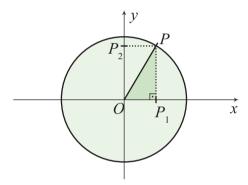


Figura 5.47

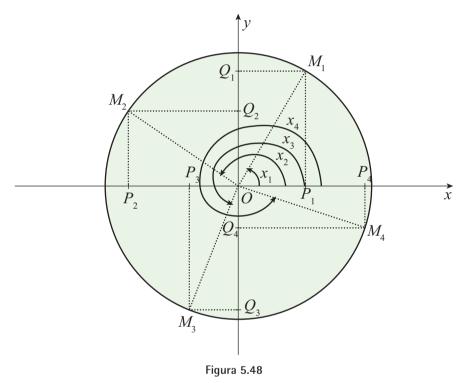
Observando o ciclo trigonométrico, podemos determinar alguns valores das funções seno e cosseno:

sen 0 = 0	$\cos 0 = 1$
$\operatorname{sen}\frac{\pi}{2} = 1$	$\cos\frac{\pi}{2} = 0$
$sen\pi=0$	$\cos \pi = -1$
$\mathrm{sen}\frac{3\pi}{2} = -1$	$\cos\frac{3\pi}{2} = 0$

Sinal algébrico do seno e cosseno de x

Na figura a seguir (5.48) apresentamos as possíveis posições de um ponto M no ciclo trigonométrico, de modo que o arco \widehat{AM} tenha medida x, dependendo dos valores reais de x:

- i) M_1 está no primeiro quadrante e corresponde ao arco de medida x_1 : seno e cosseno de x_1 são positivos.
- ii) M_2 está no segundo quadrante e corresponde ao arco de medida x_2 : seno de x_2 é positivo e cosseno de x_2 é negativo.
- iii) M_3 está no terceiro quadrante e corresponde ao arco de medida x_3 : seno e cosseno de x_3 são negativos.
- iv) M_4 está no quarto quadrante e corresponde ao arco de medida x_4 : seno de x_4 é negativo e cosseno de x_4 é positivo.



A figura 5.49 dá um resumo dos sinais algébricos dos valores de seno e cosseno nos quatro quadrantes:

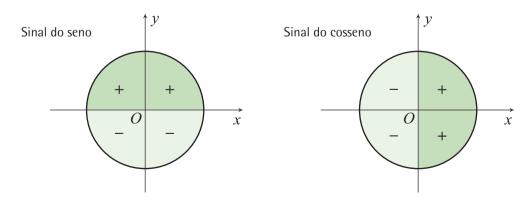


Figura 5.49

Seno e cosseno de arcos côngruos

Quanto vale sen $\frac{7\pi}{2}$? E $\cos \frac{7\pi}{2}$?

Como $\frac{7\pi}{2}$ é maior do que 2π , tomamos sua primeira determina-

ção positiva (pdp):
$$\frac{7\pi}{2} = \frac{4\pi + 3\pi}{2} = 2\pi + \frac{3\pi}{2}$$
.

Assim, a pdp do arco de medida $\frac{7\pi}{2}$ é $\frac{3\pi}{2}$; isto significa que os arcos de medida $\frac{7\pi}{2}$ e $\frac{3\pi}{2}$ têm a mesma extremidade, determinando as mesmas coordenadas.

Logo,
$$\sin \frac{7\pi}{2} = \sin \frac{3\pi}{2} = -1 = \cos \frac{7\pi}{2} = \cos \frac{3\pi}{2} = 0$$
.

Generalizando, arcos côngruos têm o mesmo seno e o mesmo cosseno. Se x é a primeira determinação positiva de um arco, os arcos côngruos a ele são representados por $x+2k\pi$, com k percorrendo o conjunto dos números inteiros. Então

$$sen(x+2k\pi) = sen x, \forall k \in \mathbb{Z}$$
$$cos(x+2k\pi) = cos x, \forall k \in \mathbb{Z}$$

Valores notáveis do seno e cosseno

Vamos lembrar o que acontece no triângulo retângulo:

$$\alpha + \beta = 90^{\circ}$$
, então:

$$\operatorname{sen} \beta = \frac{b}{a} = \cos \alpha$$

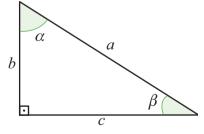


Figura 5.50

Vamos calcular agora os valores de seno e cosseno para os arcos de medida $\frac{\pi}{4}$, $\frac{\pi}{3}$ e $\frac{\pi}{6}$. Veja a figura 5.51.

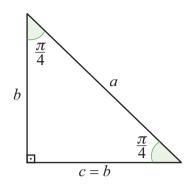


Figura 5.51

i) Para
$$\alpha = \beta = 45^{\circ}$$
, ou $\alpha = \beta = \frac{\pi}{4}$, temos:

$$2b^{2} = a^{2}$$

$$a = b\sqrt{2}$$

$$sen \frac{\pi}{4} = \frac{b}{a} = \frac{b}{b\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = \cos\frac{\pi}{4}$$

ii)
$$\alpha = 30^{\circ} = \frac{\pi}{6} e \beta = 60^{\circ} = \frac{\pi}{3}$$

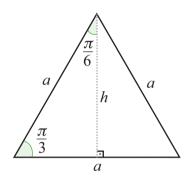


Figura 5.52

$$h^{2} + \frac{a^{2}}{4} = a^{2}$$

$$h^{2} = a^{2} - \frac{a^{2}}{4} = \frac{3a^{2}}{4}$$

$$h = \frac{\sqrt{3}}{2}a$$

Então

$$\sin\frac{\pi}{3} = \frac{h}{a} = \frac{\frac{\sqrt{3}}{2}a}{a} = \frac{\sqrt{3}}{2} = \cos\frac{\pi}{6}$$

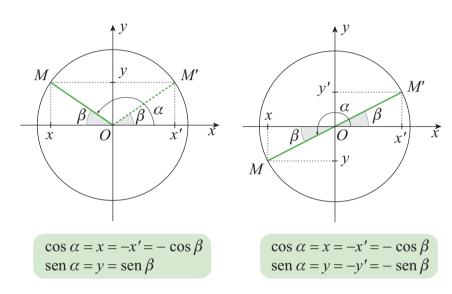
e
$$\cos \frac{\pi}{3} = \frac{\frac{a}{2}}{a} = \frac{1}{2} = \sin \frac{\pi}{6}$$

Resumindo:

x (em rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	- 1	0
sen x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1

Redução ao primeiro quadrante

Se x é a medida em radianos de um arco no segundo, terceiro ou quarto quadrantes, $\cos x$ e sen x podem ser determinados a partir de arcos no primeiro quadrante. Estes arcos do primeiro quadrante são tais que os valores de seno e cosseno, em módulo, são iguais a sen x e $\cos x$. Observe na figura a seguir as simetrias que nos permitem proceder desta forma:



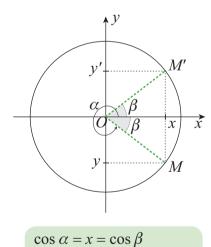


Figura 5.53

 $\operatorname{sen} \alpha = y = -y' = -\operatorname{sen} \beta$

Faremos agora um exemplo para x em cada um dos quadrantes:

41) Determinar sen
$$\frac{5\pi}{6}$$
 e $\cos \frac{5\pi}{6}$.

Observemos que o arco de medida $\frac{5\pi}{6}$ encontra-se no segundo quadrante e é um múltiplo de $\frac{\pi}{6}$, isto é, $\frac{5\pi}{6} = 5 \times \frac{\pi}{6}$. Para chegar a $\frac{5\pi}{6}$ é necessário percorrer cinco arcos de $\frac{\pi}{6}$.

Veja a figura:

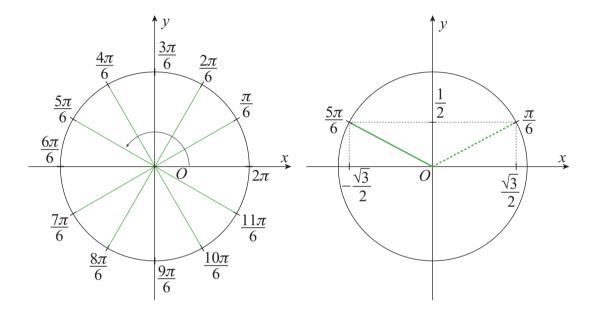


Figura 5.54

Observando a simetria, vemos que

$$\sin \frac{5\pi}{6} = \sin \frac{\pi}{6} = \frac{1}{2} e \cos \frac{5\pi}{6} = -\cos \frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$

(lembre-se que no segundo quadrante o seno é positivo e o cosseno é negativo).

42) Determine $\sin \frac{4\pi}{3} = \cos \frac{4\pi}{3}$.

O arco de medida $\frac{4\pi}{3}$ encontra-se no terceiro quadrante; usando a mesma idéia do exemplo anterior, para chegar a $\frac{4\pi}{3}$, é necessário percorrer quatro arcos de $\frac{\pi}{3}$. Veja a figura:

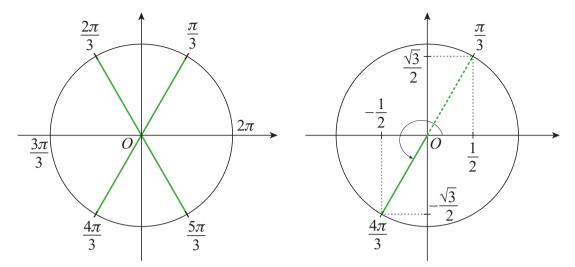


Figura 5.55

Vemos então que

$$\operatorname{sen} \frac{4\pi}{3} = -\operatorname{sen} \frac{\pi}{3} = -\frac{\sqrt{3}}{2} \operatorname{e} \cos \frac{4\pi}{3} = -\cos \frac{\pi}{3} = -\frac{1}{2}$$

(lembre-se que no terceiro quadrante seno e cosseno são negativos).

43) Determine $\sin \frac{7\pi}{4} = \cos \frac{7\pi}{4}$.

O arco de medida $\frac{7\pi}{4}$ encontra-se no quarto quadrante; analogamente aos exemplos anteriores e observando a figura, concluímos que:

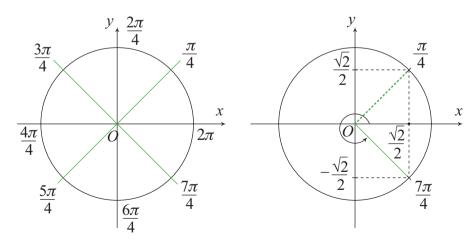


Figura 5.56

(Lembre-se que no quarto quadrante o seno é negativo e o cosseno é positivo).

Exercício proposto

24) Determine seno e cosseno dos arcos de medida:

a)
$$\frac{7\pi}{6}$$
 b) $\frac{11\pi}{4}$ c) $\frac{8\pi}{3}$ d) $-\frac{5\pi}{4}$ e) $\frac{17\pi}{6}$ f) $\frac{23\pi}{3}$

g)
$$-\frac{24\pi}{16}$$

Gráficos da função seno e da função cosseno

Como o domínio das funções seno e cosseno é o conjunto dos números reais e a imagem é o intervalo [1,-1], os gráficos destas funções estão contidos na faixa horizontal $\mathbb{R} \times [1,-1]$. Estude os gráficos com atenção: eles darão informações sobre o comportamento das funções seno e cosseno.

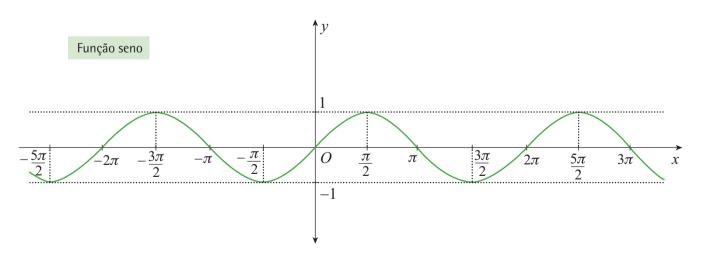


Figura 5.57

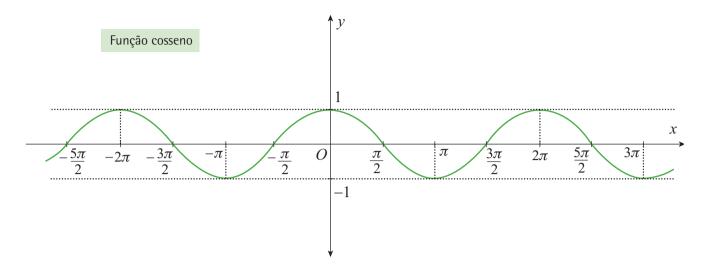


Figura 5.58

Considerações sobre as funções seno e cosseno

As funções seno e cosseno têm características especiais; vamos estudá-las agora, utilizando todas as informações que já temos sobre o comportamento destas funções. Estas informações serão muito importantes para as próximas disciplinas de Cálculo.

1) Zeros das funções seno e cosseno

Os zeros das funções seno e cosseno são os valores de x para os quais se tem sen x=0 e $\cos x=0$, respectivamente. Analisando os gráficos, vemos que:

i) os zeros de senx são

$$0, \pi, 2\pi, 3\pi, \dots, -\pi, -2\pi, -3\pi, \dots$$

ou seja, os valores de x dados por $x = k\pi$, para todo $k \in \mathbb{Z}$.

ii) os zeros da função cosx são

$$\frac{\pi}{2}$$
, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, $\frac{7\pi}{2}$,..., $-\frac{\pi}{2}$, $-\frac{3\pi}{2}$, $-\frac{5\pi}{2}$, $-\frac{7\pi}{2}$,...

ou seja, os valores de x dados por $x = \frac{(2k+1)\pi}{2}$, ou $x = k\pi + \frac{\pi}{2}$, para todo $k \in \mathbb{Z}$.

2) Seno e cosseno são funções periódicas

Uma função $f: \mathbb{R} \to \mathbb{R}$ diz-se *periódica* quando existe um número real $T \neq 0$ tal que f(x+T) = f(x), para todo $x \in \mathbb{R}$. Neste caso também tem-se f(x+kT) = f(x), para todo $k \in \mathbb{Z}$ e para todo $x \in \mathbb{R}$. O *menor número positivo T* tal que f(x+T) = f(x), para todo $x \in \mathbb{R}$, é chamado de *período* da função f.

Já sabemos que sen $(x+2\pi)$ = sen x para todo $x \in \mathbb{R}$ e também sen $(x+2k\pi)$ = sen x, $\forall k \in \mathbb{Z}$, $\forall x \in \mathbb{R}$. Isto nos garante que seno é uma função periódica e o menor número positivo T para o qual se tem sen (x+T) = sen x é $T=2\pi$. Assim, o período da função seno é 2π . Isto significa que o gráfico da função senx "se repete" a cada intervalo de comprimento 2π , a partir da origem. Analogamente, o período da função cosseno também é 2π . Veja novamente as figuras 5.57 e 5.58.

Exercício resolvido

9) Encontre o período da função $f(x) = \operatorname{sen}\left(\frac{4}{5}x\right)$.

Resolução: Procuramos o menor número T > 0 tal que f(x+T) = f(x), para todo $x \in \mathbb{R}$. Isto significa que

$$f(x+T) = \operatorname{sen}\left(\frac{4}{5}(x+T)\right) = \operatorname{sen}\left(\frac{4}{5}x + \frac{4}{5}T\right) = \operatorname{sen}\frac{4}{5}x = f(x).$$

Como o período da função seno é 2π , devemos ter

$$\frac{4}{5}T = 2\pi \Rightarrow T = \frac{10\pi}{4} = \frac{5\pi}{2}.$$

Logo, o período de $f \not\in \frac{5\pi}{2}$. Confira o resultado fazendo o gráfico.

3) Cosseno é uma função par e seno é uma função ímpar

Uma função $f: \mathbb{R} \to \mathbb{R}$ é *par* quando f(x) = f(-x), $\forall x \in \mathbb{R}$ e uma função $f: \mathbb{R} \to \mathbb{R}$ é *împar* quando f(x) = -f(-x), $\forall x \in \mathbb{R}$. Vamos analisar as funções seno e cosseno:

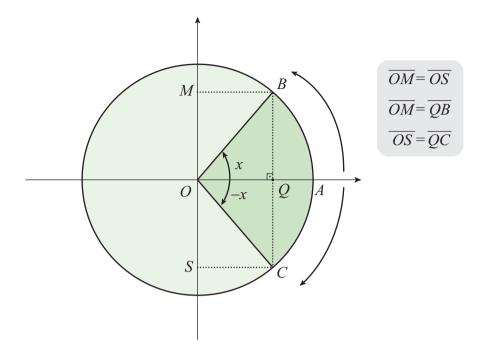


Figura 5.59

O triângulo BOC é isósceles, o que significa que os arcos \widehat{AB} e \widehat{AC} têm a mesma medida de x rad. Logo,

$$\cos x = \cos(-x), \ \forall \ x \in \mathbb{R} \ \text{e} \ \operatorname{sen} x = -\operatorname{sen}(-x), \ \forall \ x \in \mathbb{R}.$$

Assim, cosseno é uma função par e seno é uma função ímpar.

4) Funções compostas envolvendo seno e cosseno

Dada uma função real g, podemos pensar nas funções compostas $(\operatorname{sen} \circ g)(x) = \operatorname{sen}(g(x)), (\cos \circ g)(x) = \cos(g(x)), (g \circ \operatorname{sen})(x) = g(\operatorname{sen} x)$ e $(g \circ \cos)(x) = g(\cos x)$. Vamos fazer alguns exemplos para casos especiais da função g.

Exemplos:

44)
$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = x + \pi$,
 $(\operatorname{sen} \circ g)(x) = \operatorname{sen}(g(x)) = \operatorname{sen}(x + \pi)$

Vamos fazer o gráfico da função $sen(x+\pi)$, comparando-o com o gráfico de senx:

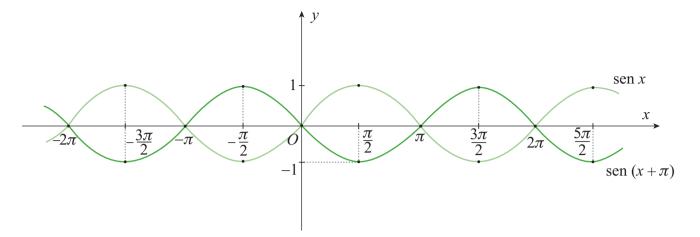


Figura 5.60

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
$sen (x + \pi)$	0	$-\frac{\sqrt{2}}{2}$	-1	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0

Analisando o gráfico, vemos que:

- 1) Os gráficos das funções senx e sen $(x+\pi)$ têm o mesmo "formato". A diferença é que o gráfico de sen $(x+\pi)$ está "deslocado" π unidades à direita no plano cartesiano em relação ao gráfico de senx. Note que os gráficos das duas funções cortam o eixo X nos mesmos pontos.
- 2) O domínio e a imagem da função $sen(x+\pi)$ são os mesmos da função senx.
- 3) senx e sen $(x+\pi)$ têm o mesmo período 2π (note que o gráfico de sen $(x+\pi)$ se repete a cada intervalo de comprimento 2π , a partir de x=0).

Tarefa

Faça o gráfico da função composta

$$(\cos \circ g)(x) = \cos(g(x)) = \cos(x + \pi)$$

e compare-o com o gráfico de cos x. O que você conclui?

45)
$$h: \mathbb{R} \to \mathbb{R}$$
, $h(x) = 2x$, $(\cos h)(x) = \cos(h(x)) = \cos(2x)$

Vamos comparar o gráfico da função cos(2x) com o gráfico de cos x:

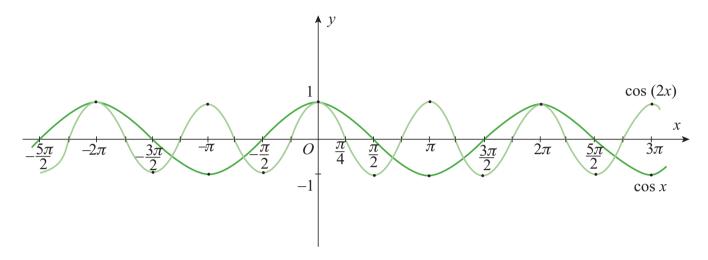


Figura 5.61

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
$\cos(2x)$	1	0	-1	0	1

Analisando os gráficos, vemos que:

a) os gráficos de $\cos(2x)$ e $\cos x$ têm o mesmo "formato" mas o gráfico de $\cos(2x)$ parece que "encolheu"! Por exemplo, $\cos(2x)$ corta o eixo X em $x=\frac{\pi}{4}$, enquanto $\cos x$ corta o eixo X em $x=\frac{\pi}{2}$ (as funções não têm os mesmos zeros). Isto significa que $\cos x$ e $\cos(2x)$ não têm o mesmo período; o gráfico de $\cos(2x)$ se repete a cada intervalo de comprimento π , a partir da origem. De fato, para a função composta $(\cos h)(x) = \cos(h(x)) = \cos(2x)$, temos que:

$$(\cos h)(x+\pi) = \cos(h(x+\pi)) = \cos(2(x+\pi)) = \cos(2x+2\pi) = \cos(2x) = \cos(h(x)) = (\cos h)(x).$$

b) o domínio e a imagem da função cos(2x) são os mesmos da função cos x.

Tarefa

- 1) Faça e estude os gráficos das funções compostas $\cos(3x)$, $\cos(4x)$, $\cos\left(\frac{x}{2}\right)$ e $\cos\left(\frac{x}{4}\right)$. O que você conclui sobre os períodos destas funções? E sobre os períodos das funções $\sin(3x)$, $\sin(4x)$, $\sin\left(\frac{x}{2}\right)$ e $\sin\left(\frac{x}{4}\right)$?
- 2) Para $f(x) = 2x + \frac{\pi}{2}$, faça o gráfico e determine o período da função composta $(\cos f)(x) = \cos(f(x)) = \cos(2x + \frac{\pi}{2})$.

Exemplo:

46) u(x) = 1 + x, $(u \circ \text{sen})(x) = u(\text{sen}(x)) = 1 + \text{sen } x$ Vamos analisar e comparar os gráficos de sen x e 1 + sen x:

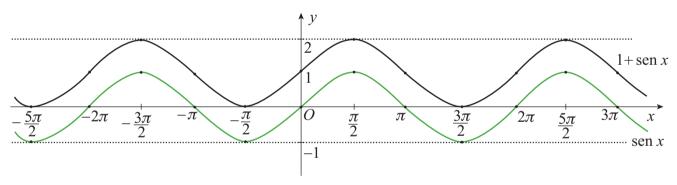


Figura 5.62

Observamos que:

- a) os dois gráficos têm o mesmo "formato", mas o gráfico de 1+sen x está deslocado uma unidade na vertical, para cima.
 Conseqüentemente, a função 1+sen x não corta o eixo X nos mesmos pontos que a função sen x (as funções não têm os mesmos zeros).
- b) o período das funções é 2π .
- c) o domínio de $1 + \operatorname{sen} x$ é o mesmo da função $\operatorname{sen} x$, mas as imagens são diferentes: $\operatorname{Im}(1 + \operatorname{sen} x) = [0, 2]$.

Tarefa

Seja v(x) = -2 + x. Analise o gráfico da função composta

$$(v \circ \cos)(x) = v(\cos(x)) = -2 + \cos x.$$

Compare com o gráfico de cosx.

Exercícios propostos

25) Dê o período e os zeros das seguintes funções:

a)
$$m(x) = 3 + \cos\left(x - \frac{\pi}{2}\right)$$

b)
$$s(x) = -4 + \operatorname{sen}\left(x + \frac{\pi}{3}\right)$$

26) Faça o gráfico das funções abaixo, no intervalo $[-2\pi, 3\pi]$.

a)
$$f(x) = \operatorname{sen}(-2x)$$

b)
$$g(x) = \operatorname{sen}\left(\frac{x}{4}\right)$$

c)
$$m(x) = \cos\left(\frac{x}{3}\right)$$

27) Sabendo que $\cos x = 0,1$ e x está no quarto quadrante, calcule $\sin x$.

Inversas das funções seno e cosseno

Seno e cosseno não são funções injetoras; por exemplo, temos sen $0 = \text{sen } \pi = 0$ e $\cos 0 = \cos 2\pi = 1$, valores distintos resultando na mesma imagem. Mas, observando o gráfico destas funções, vemos que, se as restringirmos a certos intervalos (domínio e contradomínio), elas serão injetoras e sobrejetoras e, portanto, terão uma inversa. Vamos analisar a função seno. Observe atentamente seu gráfico:

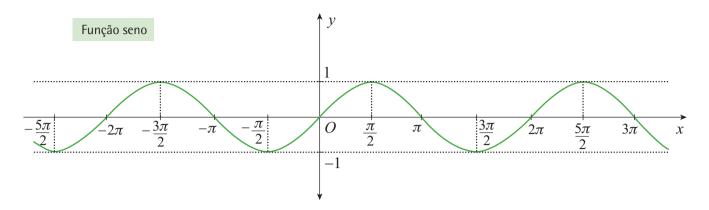


Figura 5.63

No intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ a função seno é injetora, e o mesmo ocorre nos intervalos $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$, e em uma infinidade de outros. Observe também que nestes intervalos a imagem da função é [-1,1], ou seja, ela também é sobrejetora. Fixando o intervalo

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
, consideremos a função

$$F: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow \left[-1, 1 \right]$$
$$F(x) = \operatorname{sen} x$$

 ${\cal F}$ é uma função bijetora (prove isso!) e, portanto, inversível! Definimos a inversa da função ${\cal F}$ como

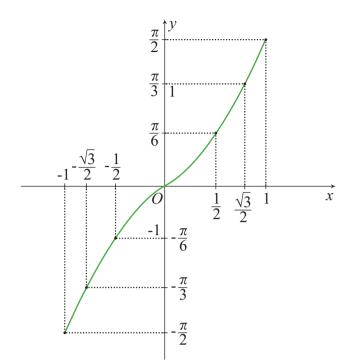
$$g:[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

g(x) = arcsen x (lê-se "arco seno de x").

A função g associa a cada número real x do intervalo [-1,1], o arco cujo seno é x. Por exemplo:

$$g\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
; $g(0) = 0$; $g\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$; $g\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

O gráfico da função g é dado por



x	arc sen x
0	0
1/2	$\pi/6 \cong 0,52$
$\sqrt{3}/2$	$\pi/3 \cong 1.04$
$\sqrt{2}/2$	$\pi/4 \cong 0.78$
-1/2	-π/6
-√3 / 2	-π/3

Figura 5.64

Note que os gráficos de F e g são simétricos em relação à bissetriz do primeiro quadrante:

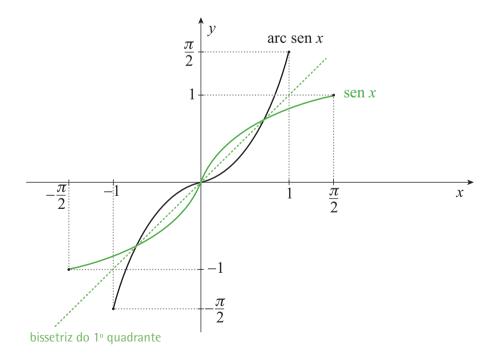


Figura 5.65

Analisando agora a função cosseno,

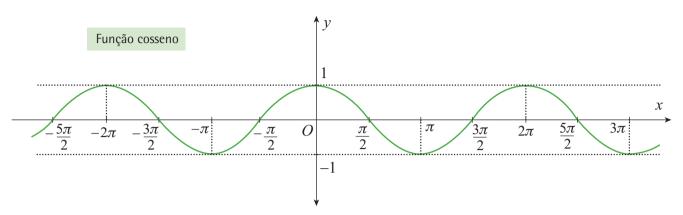


Figura 5.66

Vemos que ocorre a mesma situação que ocorria com o sen α : em certos intervalos a função é injetora. Fixamos o intervalo $[0,\pi]$ para definir a função

$$H:[0,\pi] \to [-1,1]$$

$$H(x) = \cos x$$

H é uma função bijetora (prove isso!) e, portanto, inversível. A inversa da função H é a função:

$$h: [-1,1] \to [0,\pi]$$

$$h(x) = \arccos x$$
 (lê-se "arco cosseno de x ").

A função h associa a cada número real x do intervalo [-1,1] o *arco* cujo *cosseno* é x. O gráfico da função h é dado por:

x	arccos x
-1	-1
-1/2	2π/3
0	π/2
1/2	π/3
1	0

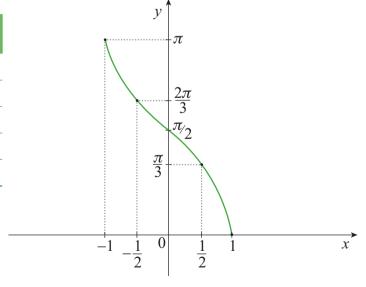


Figura 5.67

Também neste caso os gráficos de H e h são simétricos em relação à bissetriz do primeiro quadrante:

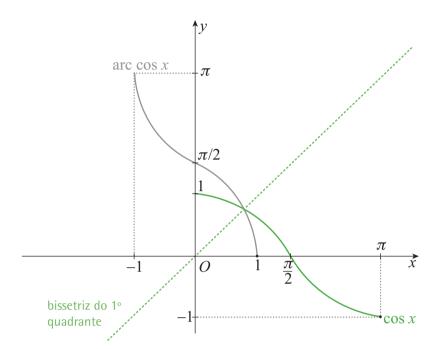


Figura 5.68

Exercícios resolvidos

10) Calcule $\operatorname{sen}\left(\arccos\frac{\sqrt{2}}{2}\right)$.

Resolução. Queremos calcular o seno do arco cujo cosseno é $\frac{\sqrt{2}}{2}$. Se y é o arco cujo cosseno é $\frac{\sqrt{2}}{2}$, isto é, $\cos y = \frac{\sqrt{2}}{2}$, qual o valor de sen y? Lembramos que nosso intervalo de trabalho para os valores do arco y é o intervalo $[0,\pi]$, a imagem da função arco cosseno. Assim, existe um único valor de y no intervalo $[0,\pi]$, tal que $\cos y = \frac{\sqrt{2}}{2}$. Este valor, como sabemos, é $\frac{\pi}{4}$. Assim,

$$\operatorname{sen}\left(\operatorname{arccos}\frac{\sqrt{2}}{2}\right) = \operatorname{sen} y = \operatorname{sen}\frac{\pi}{4} = \frac{\sqrt{2}}{2}.$$

11) Determine sen(arccos x), para x qualquer em [-1,1].

Resolução. Seja y o arco cujo cosseno é x, isto é, $\cos y = x$.

Queremos determinar sen y. Pela relação fundamental, temos que $sen^2 y + cos^2 y = 1$; substituindo cos y = x na igualdade, temos:

$$sen^{2}y + x^{2} = 1$$

$$sen^{2}y = 1 - x^{2}$$

$$sen y = \pm \sqrt{1 - x^{2}}$$

Para escolher o sinal correto, ou seja, para saber se sen y é positivo ou negativo, devemos observar que y pertence à imagem da função arco cosseno, isto é, y pertence ao intervalo $[0,\pi]$. Neste intervalo o seno é positivo, e temos sen $y=\sqrt{1-x^2}$.

12) Determine $\arcsin\left(\sin\frac{3\pi}{2}\right)$.

Resolução. Como sen $\frac{3\pi}{2} = -1$, o problema consiste em determinar arcsen (-1). O único arco pertencente ao intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ cujo seno é -1 é $\frac{-\pi}{2}$. Logo, $\arcsin\left(\sin\frac{3\pi}{2}\right) = -\frac{\pi}{2}$.

Você poderia pensar que, como seno e arco seno são funções inversas, então $\arcsin(\sin x) = x$, para qualquer valor x. Mas não podemos esquecer a definição! É preciso estar atento para o domínio e contradomínio das duas funções.

Exercício proposto

28) Calcule:

a)
$$sen\left(arcsen\frac{1}{2}\right)$$

b)
$$\cos\left(\arccos\frac{\sqrt{2}}{2}\right)$$

d)
$$\cos\left(\arcsin\frac{\sqrt{3}}{2}\right)$$

e)
$$\arcsin\left(\sin\frac{3\pi}{4}\right)$$

f)
$$\arccos\left(\cos\frac{3\pi}{2}\right)$$

5.4.2 A função tangente

Seja x um número real cujo cosseno é diferente de zero, determinando no ciclo trigonométrico o ponto D (lembre-se: o ponto D é a extremidade do arco de medida x rad). Definimos a função tangente de x (a notação é $\operatorname{tg} x$) como sendo a ordenada do ponto B, que é o ponto de intersecção do prolongamento do raio OD com uma reta paralela ao eixo Y passando pelo ponto A (tangente à circunferência), chamada "eixo das tangentes". Este eixo é uma "cópia" do eixo Y, com valores negativos abaixo de A e positivos acima de A. Veja a figura:

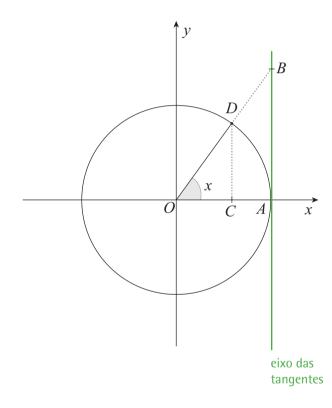


Figura 5.69

Observação 17. Note que se o cosseno de x for zero, então x será um arco de medida $k\pi + \frac{\pi}{2}$, para algum $k \in \mathbb{Z}$. Neste caso não haverá intersecção do prolongamento do raio OD com o eixo das tangentes, uma vez que serão paralelos. Por isso excluímos estes arcos da definição de tangente.

Relação entre seno, cosseno e tangente

Na figura 5.69 considere os triângulos COD e AOB, que são semelhantes. Então seus lados são proporcionais e teremos

$$\frac{CD}{OC} = \frac{AB}{OA}$$
, ou seja, $\frac{\sin x}{\cos x} = \frac{\operatorname{tg} x}{1}$, para valores de x tais que $\cos x \neq 0$.

Lembrando que $\cos x = 0$ quando $x = k\pi + \frac{\pi}{2}$, $\forall k \in \mathbb{Z}$, podemos definir a função tangente como:

$$tg: \mathbb{R} - \left\{ k\pi + \frac{\pi}{2} / k \in \mathbb{Z} \right\} \to \mathbb{R}$$
$$tgx = \frac{\sin x}{\cos x}$$

Sinal algébrico da tangente

O sinal da tangente depende dos sinais do seno e do cosseno. No primeiro e terceiro quadrantes seno e cosseno têm o mesmo sinal, o que significa que a tangente é um número positivo. No segundo e no quarto quadrantes seno e cosseno têm sinais contrários, o que significa que a tangente é um número negativo. Também podemos analisar geometricamente, como mostra a figura (notação análoga a da figura 5.69):

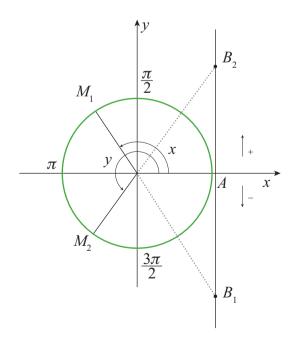


Figura 5.70

Valores notáveis da tangente

Para x = 0, temos sen 0 = 0 e cos 0 = 1. Logo, tg 0 = 0.

Para $x=\frac{\pi}{2}$, não existe um valor para a tangente, mas observe que quando x assume valores cada vez mais próximos de $\frac{\pi}{2}$, porém menores do que $\frac{\pi}{2}$, os valores de tg x aumentam, tornando-se infinitamente grandes. Veja a figura:

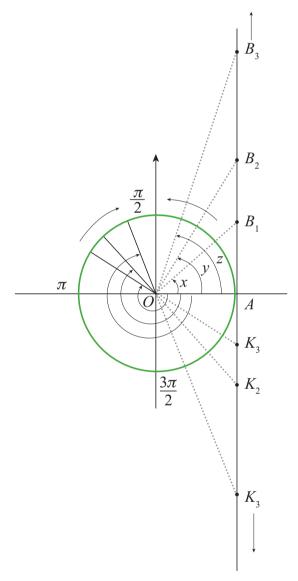


Figura 5.71

No entanto, quando x assume valores maiores do que $\frac{\pi}{2}$ e aproximando-se cada vez mais deste valor, tg x é um número negativo assumindo, em módulo, valores infinitamente grandes.

Para $x = \pi$, sen $\pi = 0$ e cos $\pi = -1$. Logo, tg $\pi = 0$.

Para $x = \frac{3\pi}{2}$, não existe tg x. Estude o que acontece com a tg x quando os valores de x se aproximam de $\frac{3\pi}{2}$.

Para
$$x = \frac{\pi}{4}$$
, $tg \frac{\pi}{4} = \frac{sen \frac{\pi}{4}}{cos \frac{\pi}{4}} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1$.

Para
$$x = \frac{\pi}{6}$$
, $tg \frac{\pi}{6} = \frac{sen \frac{\pi}{6}}{\cos \frac{\pi}{6}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$.

Para
$$x = \frac{\pi}{3}$$
, $tg \frac{\pi}{3} = \frac{sen \frac{\pi}{3}}{\cos \frac{\pi}{3}} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$.

Resumindo:

x	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	π
tg x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	0

Exercício resolvido

13) Determine o valor de $tg \frac{22\pi}{3}$.

Resolução.

$$\frac{22\pi}{3} = \frac{18\pi}{3} + \frac{4\pi}{3} = 6\pi + \frac{4\pi}{3}. \text{ Logo, } tg \frac{22\pi}{3} = tg \frac{4\pi}{3}.$$

$$\text{Como sen } \frac{4\pi}{3} = -\text{sen } \frac{\pi}{3} = -\frac{\sqrt{3}}{2} e \cos \frac{4\pi}{3} = -\cos \frac{\pi}{3} = -\frac{1}{2}.$$

teremos
$$tg \frac{22\pi}{3} = tg \frac{4\pi}{3} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}$$
.

Observação 18. Como sabemos reduzir seno e cosseno ao primeiro quadrante, também podemos fazê-lo para a tangente, já que ela depende destas duas funções. Note que basta conhecer uma das funções, seno ou cosseno, para conhecermos a tangente, pois seno e cosseno estão relacionados pela Relação Fundamental $sen^2x + cos^2x = 1$. Por exemplo, se sabemos que x está no primeiro quadrante e sen x = 0, 2, podemos calcular a tg x fazendo:

$$(0,2)^{2} + \cos^{2} x = 1$$

$$0,04 + \cos^{2} x = 1$$

$$\cos^{2} x = 1 - 0,04$$

$$\cos^{2} x = 0,96 = \frac{96}{100}$$

$$\cos x = \sqrt{\frac{96}{100}} = \frac{2\sqrt{6}}{5}$$

(como x está no 1º quadrante, tomamos a raiz positiva).

Logo,
$$\operatorname{tg} x = \frac{0.2}{\frac{2\sqrt{6}}{5}} = \frac{\frac{2}{10}}{\frac{2\sqrt{6}}{5}} = \frac{1}{2\sqrt{6}}.$$

Gráfico da função tangente

Lembrando as considerações que fizemos para os valores notáveis da tangente, vamos construir seu gráfico:

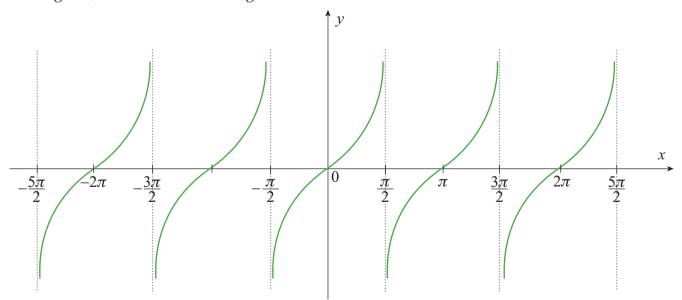


Figura 5.72

Estudando o gráfico, podemos observar que:

1) A tangente é uma função periódica e seu período é π . De fato,

$$tg(x+\pi) = \frac{\operatorname{sen}(x+\pi)}{\cos(x+\pi)} = \frac{\operatorname{sen} x \cdot \cos \pi + \cos x \cdot \operatorname{sen} \pi}{\cos x \cdot \cos \pi - \operatorname{sen} x \cdot \operatorname{sen} \pi} = \frac{-\operatorname{sen} x}{-\cos x} = tg x.$$

Note que o gráfico no intervalo $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ se repete a cada intervalo de comprimento π , do tipo $\left(k\pi-\frac{\pi}{2},k\pi+\frac{\pi}{2}\right)$ com $k\in\mathbb{Z}$.

- 2) Os zeros da função tangente são os zeros da função seno, isto é, tg x = 0 quando $x = k\pi$, pra todo $k \in \mathbb{Z}$.
- 3) A imagem da função tangente é o conjunto dos números reais.
- 4) A função não está definida para os valores $x = k\pi + \frac{\pi}{2}$, para todo $k \in \mathbb{Z}$, ou seja, estes pontos não têm imagem pela função tangente. Observe o que acontece na vizinhança destes pontos, lembrando das considerações que fizemos para os valores notáveis da tangente.
- 5) Nos intervalos

...
$$\left(\frac{-5\pi}{2}, \frac{-3\pi}{2}\right), \left(\frac{-3\pi}{2}, \frac{-\pi}{2}\right), \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{3\pi}{2}\right), ...$$
 a função tan-

gente é injetora. Isto nos sugere que ela é inversível em cada um destes intervalos.

Inversa da função tangente

Restringindo a função tangente ao intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, obtemos uma função bijetora

$$G: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$$
$$G(x) = \operatorname{tg} x$$

A inversa da função G é a função

$$g: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $g(x) = \operatorname{arctg} x$ (como para seno e cosseno, lê-se "arco tangente de x"). A função inversa g associa a cada número real x o arco cuja tangente é x. Por exemplo, $g(1) = \operatorname{arctg} 1 = \frac{\pi}{4}$, $g(-1) = \operatorname{arctg} (-1) = -\frac{\pi}{4}$, $g(0) = \operatorname{arctg} 0 = 0$.

Os gráficos da função tangente e de sua inversa são simétricos em relação à bissetriz do primeiro quadrante:

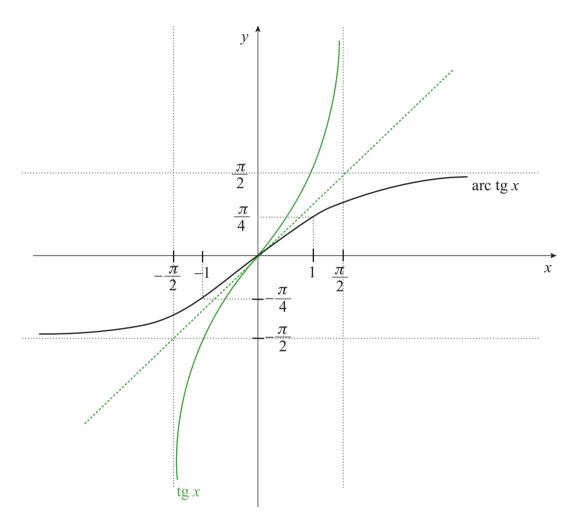


Figura 5.73

Exercício resolvido

14) Calcule sen (arctg $(-\sqrt{3})$).

Resolução. Seja x o arco cuja tangente é $-\sqrt{3}$, isto é, tg $x=-\sqrt{3}$. Queremos calcular sen x. Sabemos dos valores notáveis

que tg $\frac{\pi}{3} = \sqrt{3}$; mas qual arco cuja tangente resulta no oposto deste número? Vamos observar no ciclo trigonométrico:

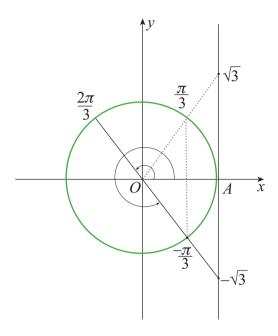


Figura 5.74

Vemos que, para os arcos de medida $\frac{2\pi}{3}$ e $\frac{-\pi}{3}$ tem-se $tg\frac{2\pi}{3} = tg\frac{-\pi}{3} = -\sqrt{3}$. Mas a função arctg tem como imagem o intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, isto é, tem como imagem arcos no primeiro ou quarto quadrantes. O arco de medida $\frac{2\pi}{3}$ está no segundo quadrante. Logo, escolhemos $x = \frac{-\pi}{3}$ e sen $\frac{-\pi}{3} = -\frac{\sqrt{3}}{2}$.

Exercícios propostos

- 29) Conhecendo o seno e o cosseno de $\frac{\pi}{6}$ rad, $\frac{\pi}{4}$ rad e $\frac{\pi}{3}$ rad, calcule senx e cosx para:
 - a) $x = 1230^{\circ}$
- b) $x = -960^{\circ}$

c)
$$x = \frac{-13\pi}{4} \text{ rad}$$
 d) $x = \frac{47\pi}{6} \text{ rad}$

d)
$$x = \frac{47\pi}{6}$$
 rad

30) Determine o sinal algébrico dos números reais:

- a) $sen\sqrt{5}$
- b) cos 7,68
- c) sen 13
- d) $\cos\sqrt{2}$

31) Faça o gráfico das funções abaixo, no intervalo $[-2\pi, 3\pi]$.

- a) $f(x) = \operatorname{tg} 2x$ b) $g(x) = \operatorname{tg} \frac{x}{2}$
- c) $h(x) = 1 + \cos 3x$ d) $m(x) = -2 + \sin \frac{x}{2}$

32) Dê o período das funções:

- a) $g_1(x) = \cos \frac{3x}{4}$ b) $g_2(x) = \sin \left(x + \frac{\pi}{2}\right)$
- c) $g_3(x) = 5\cos\frac{\pi x}{2}$ d) $g_4(x) = 8 \sin\frac{x}{3}$
- e) $g_5(x) = 1 + tg \frac{x}{2}$
- $f) g_6(x) = tg(2x)$

33) Mostre as identidades:

- a) $\cos(\pi + t) = -\cos t$
- b) $\operatorname{sen}\left(t + \frac{\pi}{2}\right) = \cos t$
- c) sen 3t = 3sen t 4sen³t
- d) $1 + \cos t = 2\cos^2\left(\frac{t}{2}\right)$

34) Calcule:

- a) $tg \frac{-13\pi}{3}$
- b) $tg \frac{23\pi}{4}$